IMP logo
IMP Reference Guide  develop.63b38c487d,2024/12/22
The Integrative Modeling Platform
em2d.py
1 """@namespace IMP.pmi.restraints.em2d
2 Restraints for handling electron microscopy images.
3 """
4 
5 import IMP
6 import IMP.core
7 import IMP.algebra
8 import IMP.atom
9 import IMP.pmi.tools
10 import ihm.location
11 import ihm.dataset
12 
13 
15  """Fit particles against a set of class averages by principal components.
16  Compares how well the principal components of the segmented class
17  average fit to the principal components of the particles.
18  """
19  def __init__(self, hier, images, pixel_size, image_resolution,
20  projection_number, resolution, micrographs_number=None,
21  n_components=1):
22  """Constructor.
23  @param hier The root hierarchy for applying the restraint
24  @param images 2D class average filenames in PGM text format
25  @param pixel_size Pixel size in angstroms
26  @param image_resolution Estimated resolution of the images
27  in angstroms
28  @param projection_number Number of projections of the model
29  to generate and fit to images. The lower the number, the
30  faster the evaluation, but the lower the accuracy
31  @param resolution Which level of
32  [model representation](@ref pmi_resolution) to use in the fit
33  @param micrographs_number Number of micrograph particles that
34  were used to generate the class averages, if known
35  @param n_components Number of the largest components to be
36  considered for the EM image
37  """
38 
39  import IMP.em2d
40 
41  self.datasets = []
42  for image in images:
43  loc = ihm.location.InputFileLocation(
44  image, details="Electron microscopy class average")
45  d = ihm.dataset.EM2DClassDataset(loc)
46  self.datasets.append(d)
47 
48  for p, state in IMP.pmi.tools._all_protocol_outputs(hier):
49  for i in range(len(self.datasets)):
50  p.add_em2d_restraint(state, self, i, resolution, pixel_size,
51  image_resolution, projection_number,
52  micrographs_number)
53 
54  # PMI2 selection
55  self.m = hier.get_model()
56  particles = IMP.atom.Selection(
57  hier, resolution=resolution).get_selected_particles()
58  self.weight = 1.0
59  self.rs = IMP.RestraintSet(self.m, 'em2d')
60  self.label = "None"
61 
62  # read PGM FORMAT images
63  # format conversion recommendation - first run
64  # "e2proc2d.py $FILE ${NEW_FILE}.pgm"
65  # then, run "convert ${NEW_FILE}.pgm -compress none ${NEW_FILE2}.pgm"
66 
67  # Number of the largest components to be considered for the EM image
68  if n_components >= 2:
70  particles, images, pixel_size, image_resolution,
71  projection_number, True, n_components)
72  else:
74  particles, images, pixel_size, image_resolution,
75  projection_number, True)
76  if micrographs_number:
77  em2d.set_micrographs_number(micrographs_number)
78  self._em2d_restraint = em2d
79  self._num_images = len(images)
80  self.rs.add_restraint(em2d)
81 
82  def set_label(self, label):
83  self.label = label
84 
85  def add_to_model(self):
86  IMP.pmi.tools.add_restraint_to_model(self.m, self.rs, add_to_rmf=True)
87 
88  def get_restraint(self):
89  return self.rs
90 
91  def set_weight(self, weight):
92  self.weight = weight
93  self.rs.set_weight(self.weight)
94 
95  def get_output(self):
96  output = {}
97  score = self.weight*self.rs.unprotected_evaluate(None)
98  output["_TotalScore"] = str(score)
99  output["ElectronMicroscopy2D_" + self.label] = str(score)
100  # For each image, get the transformation that places the
101  # model on the image, and its cross correlation coefficient
102  for i in range(self._num_images):
103  prefix = 'ElectronMicroscopy2D_%s_Image%d' % (self.label, i+1)
104  ccc = self._em2d_restraint.get_cross_correlation_coefficient(i)
105  output[prefix + '_CCC'] = str(ccc)
106  tran = self._em2d_restraint.get_transformation(i)
107  r = tran.get_rotation().get_quaternion()
108  t = tran.get_translation()
109  for j in range(4):
110  output[prefix + '_Rotation%d' % j] = str(r[j])
111  for j in range(3):
112  output[prefix + '_Translation%d' % j] = str(t[j])
113  return output
114 
115 
117  """FFT based image alignment, developed by Javier Velazquez-Muriel"""
118  def __init__(self, hier, images=None, pixel_size=None,
119  image_resolution=None, projection_number=None,
120  resolution=None):
121  """Constructor.
122  @param hier The root hierarchy for applying the restraint
123  @param images SPIDER FORMAT images (format conversion should be done
124  through EM2EM)
125  @param pixel_size sampling rate of the available EM images (angstroms)
126  @param image_resolution resolution at which you want to generate the
127  projections of the model. In principle you want "perfect"
128  projections, so use the highest resolution
129  @param projection_number Number of projections of the model (coarse
130  registration) to estimate the registration parameters
131  @param resolution Which level of
132  [model representation](@ref pmi_resolution) to use in the fit
133  """
134 
135  import IMP.em2d
136 
137  # check input
138  if images is None:
139  raise Exception("EM2D_FFT: must pass images")
140  if pixel_size is None:
141  raise Exception("EM2D_FFT: must pass pixel size")
142  if image_resolution is None:
143  raise Exception("EM2D_FFT: must pass image resolution")
144  if projection_number is None:
145  raise Exception("EM2D_FFT: must pass projection_number")
146 
147  # PMI2 selection
148  self.m = hier.get_model()
149  particles = IMP.atom.Selection(
150  hier, resolution=resolution).get_selected_particles()
151 
152  self.weight = 1.0
153  self.rs = IMP.RestraintSet(self.m, 'em2d_FFT')
154  self.label = "None"
155 
156  # read
158  imgs = IMP.em2d.read_images(images, srw)
159 
161  pixel_size, image_resolution, projection_number)
162 
163  # This method (recommended) uses preprocessing of the images and
164  # projections to speed-up the registration
165  params.coarse_registration_method = IMP.em2d.ALIGN2D_PREPROCESSING
166  params.optimization_steps = 50
167  params.simplex_initial_length = 0.1
168  params.simplex_minimum_size = 0.02
169 
170  # use true if you want to save the projections from the model that
171  # best match the EM images
172  params.save_match_images = False
173 
174  ######################
175  # set up the em2D restraint
176  ######################
177  score_function = IMP.em2d.EM2DScore()
178  em2d_restraint = IMP.em2d.Em2DRestraint(self.m)
179  em2d_restraint.setup(score_function, params)
180  em2d_restraint.set_images(imgs)
181  em2d_restraint.set_fast_mode(5)
182  em2d_restraint.set_name("em2d_restraint")
183 
184  print("len(particles) = ", len(particles))
185  container = IMP.container.ListSingletonContainer(self.m, particles)
186  em2d_restraint.set_particles(container)
187 
188  self.rs.add_restraint(em2d_restraint)
189 
190  def set_label(self, label):
191  self.label = label
192 
193  def add_to_model(self):
194  IMP.pmi.tools.add_restraint_to_model(self.m, self.rs)
195 
196  def get_restraint(self):
197  return self.rs
198 
199  def set_weight(self, weight):
200  self.weight = weight
201  self.rs.set_weight(self.weight)
202 
203  def get_output(self):
204  output = {}
205  score = self.weight*self.rs.unprotected_evaluate(None)
206  output["_TotalScore"] = str(score)
207  output["ElectronMicroscopy2D_FFT_" + self.label] = str(score)
208  return output
Restraints using electron microscopy 2D images (class averages).
Fit particles against a set of class averages by principal components.
Definition: em2d.py:14
Miscellaneous utilities.
Definition: tools.py:1
Object used to hold a set of restraints.
Definition: RestraintSet.h:41
Fast scoring of Particles against electron microscopy class averages.
Store a list of ParticleIndexes.
def add_restraint_to_model
Add a PMI restraint to the model.
Definition: tools.py:84
Images read_images(const Strings &names, const ImageReaderWriter *rw)
Basic functionality that is expected to be used by a wide variety of IMP users.
General purpose algebraic and geometric methods that are expected to be used by a wide variety of IMP...
Parameters used by Em2DRestraint and ProjectionFinder.
The general base class for IMP exceptions.
Definition: exception.h:48
Functionality for loading, creating, manipulating and scoring atomic structures.
Select hierarchy particles identified by the biological name.
Definition: Selection.h:70
FFT based image alignment, developed by Javier Velazquez-Muriel.
Definition: em2d.py:116