1 """@namespace IMP.pmi.restraints.saxs
2 Restraints for handling small angle x-ray (SAXS) data.
23 """Basic SAXS restraint."""
25 _include_in_rmf =
True
27 def __init__(self, input_objects, saxs_datafile, weight=1.0,
28 ff_type=IMP.saxs.HEAVY_ATOMS, label=
None, maxq=
"standard"):
29 """Builds the restraint.
30 @param input_objects A list of hierarchies or PMI objects that the
31 SAXS restraint will be applied to. This hierarchy must be
32 atomic unless ff_type=IMP.saxs.RESIDUES is used.
33 @param saxs_datafile the SAXS .dat file.
34 @param weight Restraint score coefficient
35 @param ff_type the form factor to use, of the following types:
36 - IMP.saxs.HEAVY_ATOMS: use form factors with implicit
38 - IMP.saxs.ALL_ATOMS: use individual form factors for all
39 atoms. Does not build missing hydrogens.
40 - IMP.saxs.CA_ATOMS: use residue based form factors
42 - IMP.saxs.RESIDUES: use residue based form factors
43 using per-residue beads
44 @param label Label for the restraint in outputs
45 @param maxq Maximum q value that the restraint will be evaluated at.
46 If set to 'standard' (the default), the following values will
47 be used (these values were eyeballed by comparing ALL_ATOM
48 calculated SAXS profiles to those calculated with the reduced
49 representations, so could be improved):
50 - For ff_type = ALL_ATOMS: 0.5
52 - CA_ATOMS and RESIDUES: 0.15
57 model = list(hiers)[0].get_model()
58 super().
__init__(model, label=label, weight=weight)
61 if maxq ==
"standard":
62 if ff_type == IMP.saxs.CA_ATOMS
or ff_type == IMP.saxs.RESIDUES:
64 elif ff_type == IMP.saxs.HEAVY_ATOMS:
68 elif isinstance(maxq, float):
69 if maxq < 0.01
or maxq > 4.0:
71 "SAXSRestraint: maxq must be set between 0.01 and 4.0")
72 if (ff_type == IMP.saxs.CA_ATOMS
or ff_type == IMP.saxs.RESIDUES) \
74 warnings.warn(
"SAXSRestraint: for residue-resolved form "
75 "factors, a maxq > 0.15 is not recommended!",
79 "SAXSRestraint: maxq must be set to a number between 0.01 "
85 if ff_type == IMP.saxs.RESIDUES:
87 hiers, resolution=1).get_selected_particles()
89 elif ff_type == IMP.saxs.CA_ATOMS:
91 hiers, atom_type=IMP.atom.AT_CA).get_selected_particles()
93 elif ff_type == IMP.saxs.HEAVY_ATOMS
or ff_type == IMP.saxs.ALL_ATOMS:
95 hiers, resolution=0).get_selected_particles()
99 "SAXSRestraint: Must provide an IMP.saxs atom type: "
100 "RESIDUES, CA_ATOMS, HEAVY_ATOMS or ALL_ATOMS")
102 if len(self.particles) == 0:
103 raise Exception(
"SAXSRestraint: There are no selected particles")
107 self.rs.add_restraint(self.restraint)
112 """Basic SAXS restraint using ISD."""
114 def __init__(self, representation, profile, resolution=0, weight=1,
115 ff_type=IMP.saxs.HEAVY_ATOMS, label=
None):
117 if not hasattr(IMP,
'isd2'):
118 raise ImportError(
"Module isd2 not installed. "
119 "Cannot use SAXSISDRestraint")
121 model = representation.prot.get_model()
122 super().__init__(model, label=label, weight=weight)
124 self.taumaxtrans = 0.05
127 self.atoms = IMP.pmi.tools.select(
129 resolution=resolution)
132 self.gamma = IMP.pmi.tools.SetupNuisance(
133 self.model, 1., 0.,
None,
False).get_particle()
136 self.sigma = IMP.pmi.tools.SetupNuisance(
137 self.model, 10.0, 0.,
None,
False).get_particle()
140 self.tau = IMP.pmi.tools.SetupNuisance(self.model, 1., 0.,
None,
False,
144 self.c1 = IMP.pmi.tools.SetupNuisance(self.model, 1.0, 0.95, 1.05,
146 self.c2 = IMP.pmi.tools.SetupNuisance(self.model, 0.0, -2., 4.,
150 self.w = IMP.pmi.tools.SetupWeight(self.model).get_particle()
154 self.cov = [[1
if i == j
else 0
for j
in range(self.prof.size())]
155 for i
in range(self.prof.size())]
157 print(
"create saxs restraint")
158 self.saxs = IMP.isd2.SAXSRestraint(self.prof, self.sigma, self.tau,
159 self.gamma, self.w, self.c1,
161 self.saxs.add_scatterer(self.atoms, self.cov, ff_type)
163 self.rs.add_restraint(self.saxs)
168 self.rs2 = self._create_restraint_set(
'Prior')
171 self.rs2.add_restraint(j1)
173 self.rs2.add_restraint(j2)
175 self.rs2.add_restraint(j3)
178 pw.set_weights(pw.get_unit_simplex().get_barycenter())
179 pw.set_weights_are_optimized(
True)
182 """Set sigma to the value that maximizes its conditional likelihood"""
184 sigma2hat = self.saxs.get_sigmasq_scale_parameter() \
185 / (self.saxs.get_sigmasq_shape_parameter() + 1)
189 """Set gamma to the value that maximizes its conditional likelihood"""
191 gammahat = math.exp(self.saxs.get_loggamma_variance_parameter() *
192 self.saxs.get_loggamma_jOg_parameter())
195 def optimize_tau(self, ltaumin=-2, ltaumax=3, npoints=100):
199 fl = open(
'tauvals.txt',
'w')
200 for tauval
in self._logspace(ltaumin, ltaumax, npoints):
203 values.append((self.model.evaluate(
False), tauval))
206 fl.write(
'%G %G\n' % (values[-1][1], values[-1][0]))
208 ltcenter = math.log(values[0][1]) / math.log(10)
209 spacing = (ltaumax - ltaumin) / float(npoints)
211 for tauval
in self._logspace(
212 ltcenter - 2 * spacing, ltcenter + 2 * spacing,
215 values.append((self.model.evaluate(
False), tauval))
216 fl.write(
'%G %G\n' % (values[-1][1], values[-1][0]))
221 """Get value of gamma."""
222 return self.gamma.get_scale()
224 def set_taumaxtrans(self, taumaxtrans):
225 self.taumaxtrans = taumaxtrans
228 """Draw 1/sigma2 from gamma distribution."""
230 self.saxs.draw_sigma()
233 """Draw gamma from lognormal distribution."""
235 self.saxs.draw_gamma()
237 def update_covariance_matrix(self):
242 self.cov = IMP.isd2.compute_relative_covariance(self.atoms, c1, c2,
247 self.saxs.set_cov(0, self.cov)
249 def write_covariance_matrix(self, fname):
250 fl = open(fname,
'w')
251 for line
in self.cov:
256 def get_output(self):
257 output = super().get_output()
258 suffix = self._get_label_suffix()
259 output[
"SAXSISDRestraint_Sigma" +
260 suffix] = str(self.sigma.get_scale())
261 output[
"SAXSISDRestraint_Tau" + suffix] = str(self.tau.get_scale())
262 output[
"SAXSISDRestraint_Gamma" +
263 suffix] = str(self.gamma.get_scale())
267 def _logspace(a, b, num=100):
268 """Mimic numpy's logspace function"""
270 val = a + float(b - a) / float(num - 1) * i
Add weights to a particle.
Various classes to hold sets of particles.
def optimize_gamma
Set gamma to the value that maximizes its conditional likelihood.
Calculate score based on fit to SAXS profile.
void write_pdb(const Selection &mhd, TextOutput out, unsigned int model=1)
Add scale parameter to particle.
Classes to handle different kinds of restraints.
def optimize_sigma
Set sigma to the value that maximizes its conditional likelihood.
def draw_gamma
Draw gamma from lognormal distribution.
Add nuisance parameter to particle.
Basic SAXS restraint using ISD.
def get_gamma_value
Get value of gamma.
def __init__
Builds the restraint.
Basic functionality that is expected to be used by a wide variety of IMP users.
General purpose algebraic and geometric methods that are expected to be used by a wide variety of IMP...
The general base class for IMP exceptions.
def draw_sigma
Draw 1/sigma2 from gamma distribution.
Functionality for loading, creating, manipulating and scoring atomic structures.
Select hierarchy particles identified by the biological name.
Support for small angle X-ray scattering (SAXS) data.
Warning for probably incorrect input parameters.
Inferential scoring building on methods developed as part of the Inferential Structure Determination ...