IMP logo
IMP Reference Guide  develop.d97d4ead1f,2024/11/21
The Integrative Modeling Platform
cluster.py
1 #!/usr/bin/env python
2 
3 from IMP import ArgumentParser
4 import itertools
5 import math
6 import IMP.multifit
7 import IMP.container
8 
9 __doc__ = "Cluster assembly solutions."
10 
11 
12 def get_uniques(seq):
13  # Not order preserving
14  keys = {}
15  counter = []
16  for e in seq:
17  keys[e] = 1
18  num_keys = len(list(keys.keys()))
19  for i in range(num_keys + 1):
20  counter.append([0, i])
21  for e in seq:
22  counter[e][0] = counter[e][0] + 1
23  counter = sorted(counter, reverse=True)
24  indexes = []
25  for c, i in counter[:-1]:
26  indexes.append(i)
27  return indexes
28 
29 
30 class ClusterData:
31 
32  def __init__(self, cluster_ind, cluster_size, rmsd_calculated):
33  self.cluster_ind = cluster_ind
34  self.cluster_size = cluster_size
35  self.rmsd_calculated = rmsd_calculated
36 
37  def set_distance_stats(self, avg, std):
38  self.distance_avg = avg
39  self.distance_std = std
40 
41  def set_angle_stats(self, avg, std):
42  self.angle_avg = avg
43  self.angle_std = std
44 
45  def set_rmsd_stats(self, avg, std):
46  self.rmsd_avg = avg
47  self.rmsd_std = std
48 
49  def set_best_sampled_data(self, ind, rmsd, cc, distance, angle):
50  self.best_sampled_ind = ind
51  self.best_sampled_rmsd = rmsd
52  self.best_sampled_cc = cc
53  self.best_sampled_distance = distance
54  self.best_sampled_angle = angle
55 
56  def set_best_scored_data(self, ind, rmsd, cc, distance, angle):
57  self.best_scored_ind = ind
58  self.best_scored_rmsd = rmsd
59  self.best_scored_cc = cc
60  self.best_scored_distance = distance
61  self.best_scored_angle = angle
62 
63 
65 
66  """
67  Clusters assembly models
68  - The solutions are chosen by sorting the database according to the
69  parameter orderby
70  - The models are aligned and clustered by RMSD
71  """
72 
73  def __init__(self, asmb_fn, prot_fn, map_fn, align_fn, combs_fn):
74  self.asmb_fn = asmb_fn
75  self.prot_fn = prot_fn
76  self.map_fn = map_fn
77  self.align_fn = align_fn
78  self.combs_fn = combs_fn
79 
80  self.asmb = IMP.multifit.read_settings(self.asmb_fn)
81  self.asmb.set_was_used(True)
82  self.prot_data = IMP.multifit.read_proteomics_data(self.prot_fn)
83  self.alignment_params = IMP.multifit.AlignmentParams(self.align_fn)
85  self.prot_data, self.map_fn)
86 
88  self.mapping_data, self.asmb,
89  self.alignment_params)
90  self.align.set_was_used(True)
91 
92  self.combs = IMP.multifit.read_paths(self.combs_fn)
93  self.ensmb = IMP.multifit.Ensemble(self.asmb, self.mapping_data)
94  self.ensmb.set_was_used(True)
95  self.mhs = self.align.get_molecules()
96  for i, mh in enumerate(self.mhs):
97  trans_fname = \
98  self.asmb.get_component_header(i).get_transformations_fn()
99  self.ensmb.add_component_and_fits(
100  mh, IMP.multifit.read_fitting_solutions(trans_fname))
101  # load the density map
102  self.dmap = IMP.em.read_map(
103  self.asmb.get_assembly_header().get_dens_fn())
104  self.dmap.set_was_used(True)
105  self.dmap.get_header().set_resolution(
106  self.asmb.get_assembly_header().get_resolution())
107  _ = self.asmb.get_assembly_header().get_threshold()
108  self.dmap.update_voxel_size(
109  self.asmb.get_assembly_header().get_spacing())
110  self.dmap.set_origin(self.asmb.get_assembly_header().get_origin())
111  self.dmap.calcRMS()
112 
113  def do_clustering(self, max_comb_ind, max_rmsd):
114  """
115  Cluster configurations for a model based on RMSD.
116  An IMP.ConfigurationSet is built using the reference frames for
117  all of the components of the assembly for each solution
118  @param max_comb_ind Maximum number of components to consider
119  @param max_rmsd Maximum RMSD tolerated when clustering
120  """
121  import fastcluster
122  import scipy.cluster.hierarchy
123 
124  self.mdl = self.align.get_model()
125  self.all_ca = []
126  for mh in self.mhs:
127  mh_res = IMP.atom.get_by_type(mh, IMP.atom.RESIDUE_TYPE)
128  s1 = IMP.atom.Selection(mh_res)
129  s1.set_atom_types([IMP.atom.AtomType("CA")])
130  self.all_ca.append(s1.get_selected_particles())
131  # load configurations
132  self.coords = []
133  print("load configurations")
134  for combi, comb in enumerate(self.combs[:max_comb_ind]):
135  self.ensmb.load_combination(comb)
136  c1 = []
137  for mol_ca in self.all_ca:
138  mol_xyz = []
139  for ca in mol_ca:
140  mol_xyz.append(IMP.core.XYZ(ca).get_coordinates())
141  c1.append(mol_xyz)
142  self.coords.append(c1)
143  self.ensmb.unload_combination(comb)
144  self.distances = []
145  print("calculate distances")
146  for i in range(len(self.coords)):
147  for j in range(i + 1, len(self.coords)):
148  self.distances.append(
150  list(itertools.chain.from_iterable(self.coords[i])),
151  list(itertools.chain.from_iterable(self.coords[j]))))
152  print("cluster")
153  Z = fastcluster.linkage(self.distances)
154  self.cluster_inds = scipy.cluster.hierarchy.fcluster(
155  Z, max_rmsd, criterion='distance')
156  self.uniques = get_uniques(self.cluster_inds)
157  print("number of clusters", len(self.uniques))
158 
159  # return clusters by their size
160  return self.uniques
161 
163  self, model_coords, native_coords):
164  """
165  Computes the position error (placement distance) and the orientation
166  error (placement angle) of the coordinates in model_coords with
167  respect to the coordinates in native_coords.
168  placement distance - translation between the centroids of the
169  coordinates.
170  placement angle - Angle in the axis-angle formulation of the rotation
171  aligning the two rigid bodies.
172  """
173  native_centroid = IMP.algebra.get_centroid(native_coords)
174  model_centroid = IMP.algebra.get_centroid(model_coords)
175  translation_vector = native_centroid - model_centroid
176  distance = translation_vector.get_magnitude()
177  if (len(model_coords) != len(native_coords)):
178  raise ValueError(
179  "Mismatch in the number of members %d %d " % (
180  len(model_coords),
181  len(native_coords)))
183  model_coords,
184  native_coords)
185  P = IMP.algebra.get_axis_and_angle(TT.get_rotation())
186  angle = P.second * 180. / math.pi
187  return distance, angle
188 
189  def get_cc(self, ps):
190  '''
191  bb_native = self.dmap.get_bounding_box()
192  bb_solution = IMP.core.get_bounding_box(IMP.core.XYZs(ps))
193  # bounding box enclosing both the particles of the native assembly
194  # and the particles of the model
195  bb_union = IMP.algebra.get_union(bb_native, bb_solution)
196  # add border of 4 voxels
197  border = 4*voxel_size
198  bottom = bb_union.get_corner(0)
199  bottom += IMP.algebra.Vector3D(-border, -border, -border)
200  top = bb_union.get_corner(1)
201  top += IMP.algebra.Vector3D(border, border, border)
202  bb_union = IMP.algebra.BoundingBox3D(bottom, top)
203  '''
204 
205  map_solution = IMP.em.SampledDensityMap(self.dmap.get_header())
206  map_solution.set_particles(ps)
207  map_solution.resample()
208  map_solution.set_was_used(True)
209 
210  map_solution.calcRMS()
211  # base the calculation of the cross_correlation coefficient on the
212  # threshold for the native map, because the threshold for the map of
213  # the model changes with each model
214  # map_solution.get_header().show()
215  threshold = 0.01 # threshold AFTER normalization using calcRMS()
216  ccc = IMP.em.get_coarse_cc_coefficient(map_solution,
217  self.dmap, threshold)
218  return ccc
219 
220  def get_cluster_representative_combination(self, query_cluster_ind):
221  return self.combs[self.clusters_data[query_cluster_ind].cluster_ind]
222 
223  def get_cluster_stats(self, query_cluster_ind):
224  return self.clusters_data[query_cluster_ind]
225 
226  def do_analysis(self, max_comb_ind):
227  self.clusters_data = {}
228  for cluster_ind in self.uniques:
229  self.clusters_data[cluster_ind] = self.analyze_cluster(
230  cluster_ind, max_comb_ind)
231 
232  def analyze_cluster(self, query_cluster_ind, max_comb_ind):
233  # load reference
234  mhs_native = []
235  mhs_native_ca = []
236  mhs_native_ca_ps = []
237  calc_rmsd = True
238  for i in range(len(self.mhs)):
239  if self.asmb.get_component_header(i).get_reference_fn() == "":
240  calc_rmsd = False
241  continue
242  mhs_native.append(
244  self.asmb.get_component_header(
245  i).get_reference_fn(
246  ),
247  self.mdl))
248  s1 = IMP.atom.Selection(mhs_native[-1])
249  s1.set_atom_types([IMP.atom.AtomType("CA")])
250  mhs_native_ca.append([])
251  mhs_native_ca_ps.append([])
252  for p in s1.get_selected_particles():
253  mhs_native_ca[-1].append(IMP.core.XYZ(p).get_coordinates())
254  mhs_native_ca_ps[-1].append(IMP.core.XYZ(p))
255 
256  rmsds = []
257  distances = []
258  angles = []
259  for i in range(len(self.mhs)):
260  distances.append([])
261  angles.append([])
262  best_sampled_ind = -1
263  best_scored_ind = -1
264  counter = -1
265  for elem_ind1, cluster_ind1 in enumerate(self.cluster_inds):
266  if cluster_ind1 != query_cluster_ind:
267  continue
268  counter = counter + 1
269  if calc_rmsd:
270  rmsds.append(
272  list(itertools.chain.from_iterable(mhs_native_ca)),
273  list(itertools.chain.from_iterable(
274  self.coords[elem_ind1]))))
275  if best_scored_ind == -1:
276  self.ensmb.load_combination(self.combs[elem_ind1])
277  best_scored_ind = counter
278  best_scored_cc = self.get_cc(
279  list(itertools.chain.from_iterable(self.all_ca)))
280  if calc_rmsd:
281  best_scored_rmsd = rmsds[-1]
282  best_sampled_ind = counter
283  best_sampled_cc = best_scored_cc
284  best_sampled_rmsd = rmsds[-1]
285  self.ensmb.unload_combination(self.combs[elem_ind1])
286  # print rmsds[-1],best_scored_rmsd
287  if calc_rmsd:
288  if rmsds[-1] < best_scored_rmsd:
289  self.ensmb.load_combination(self.combs[elem_ind1])
290  best_sampled_ind = counter
291  best_sampled_cc = self.get_cc(
292  list(itertools.chain.from_iterable(self.all_ca)))
293  best_sampled_rmsd = rmsds[-1]
294  self.ensmb.unload_combination(self.combs[elem_ind1])
295  sum_d = 0
296  sum_a = 0
297  for i in range(len(self.mhs)):
299  self.coords[elem_ind1][i],
300  mhs_native_ca[i])
301  sum_d = sum_d + d
302  sum_a = sum_a + a
303  distances[i].append(sum_d / len(self.mhs))
304  angles[i].append(sum_a / len(self.mhs))
305  cd = ClusterData(query_cluster_ind, counter + 1, calc_rmsd)
306  if calc_rmsd:
307  import numpy
308  d = numpy.array(list(itertools.chain.from_iterable(distances)))
309  a = numpy.array(list(itertools.chain.from_iterable(angles)))
310  r = numpy.array(rmsds)
311  cd.set_distance_stats(d.mean(), d.std())
312  cd.set_angle_stats(a.mean(), a.std())
313  cd.set_best_scored_data(
314  best_scored_ind,
315  best_scored_rmsd,
316  best_scored_cc,
317  d[0],
318  a[0])
319  cd.set_rmsd_stats(r.mean(), r.std())
320  cd.set_best_sampled_data(
321  best_sampled_ind,
322  best_sampled_rmsd,
323  best_sampled_cc,
324  d[best_sampled_ind],
325  a[best_sampled_ind])
326  else:
327  cd.set_best_scored_data(
328  best_scored_ind,
329  -1,
330  best_scored_cc,
331  -1,
332  -1)
333  return cd
334 
335 
336 def usage():
337  desc = """
338 Clustering of assembly solutions.
339 
340 This program uses the Python 'fastcluster' module, which can be obtained from
341 http://math.stanford.edu/~muellner/fastcluster.html
342 """
343  p = ArgumentParser(description=desc)
344  p.add_argument("-m", "--max", type=int, dest="max", default=999999999,
345  help="maximum solutions to consider")
346  p.add_argument("-r", "--rmsd", type=float, dest="rmsd", default=5,
347  help="maximum rmsd within a cluster")
348  p.add_argument("assembly_file", help="assembly file name")
349  p.add_argument("proteomics_file", help="proteomics file name")
350  p.add_argument("mapping_file", help="mapping file name")
351  p.add_argument("param_file", help="parameter file name")
352  p.add_argument("combinations_file", help="combinations file name")
353  p.add_argument("cluster_file", help="output clusters file name")
354 
355  return p.parse_args()
356 
357 
358 def main():
359  IMP.set_log_level(IMP.WARNING)
360  args = usage()
361 
362  clust_engine = AlignmentClustering(
363  args.assembly_file,
364  args.proteomics_file,
365  args.mapping_file,
366  args.param_file,
367  args.combinations_file)
368  _ = clust_engine.do_clustering(args.max, args.rmsd)
369  print("clustering completed")
370  print("start analysis")
371  clust_engine.do_analysis(args.max)
372  repr_combs = []
373  for cluster_ind in clust_engine.uniques:
374  repr_combs.append(
375  clust_engine.get_cluster_representative_combination(cluster_ind))
376  IMP.multifit.write_paths(repr_combs, args.cluster_file)
377  # print the clusters data
378  for cluster_ind in clust_engine.uniques:
379  info = clust_engine.get_cluster_stats(cluster_ind)
380  repr_combs.append(
381  clust_engine.get_cluster_representative_combination(cluster_ind))
382  print("==========Cluster index:", info.cluster_ind, "size:",
383  info.cluster_size)
384  if info.rmsd_calculated:
385  print("best sampled in cluster (index,cc,distance,angle,rmsd):",
386  info.best_sampled_ind, info.best_sampled_cc,
387  info.best_sampled_distance, info.best_sampled_angle,
388  info.best_sampled_rmsd)
389  if info.rmsd_calculated:
390  print("cluster representative (index,cc,distance,angle,rmsd):",
391  info.best_scored_ind, info.best_scored_cc,
392  info.best_scored_distance, info.best_scored_angle,
393  info.best_scored_rmsd)
394  else:
395  print("cluster representative (index,cc):", info.best_scored_ind,
396  info.best_scored_cc)
397 
398 
399 if __name__ == "__main__":
400  main()
An ensemble of fitting solutions.
double get_coarse_cc_coefficient(const DensityMap *grid1, const DensityMap *grid2, double grid2_voxel_data_threshold, bool allow_padding=false, FloatPair norm_factors=FloatPair(0., 0.))
Calculates the cross correlation coefficient between two maps.
Various classes to hold sets of particles.
Clusters assembly models.
Definition: cluster.py:64
void write_paths(const IntsList &paths, const std::string &txt_filename)
The type of an atom.
SettingsData * read_settings(const char *filename)
void read_pdb(TextInput input, int model, Hierarchy h)
ProteinsAnchorsSamplingSpace read_protein_anchors_mapping(multifit::ProteomicsData *prots, const std::string &anchors_prot_map_fn, int max_paths=INT_MAX)
Align proteomics graph to EM density map.
Class for sampling a density map from particles.
double get_rmsd(const Selection &s0, const Selection &s1)
Fitting atomic structures into a cryo-electron microscopy density map.
std::pair< Vector3D, double > get_axis_and_angle(const Rotation3D &rot)
Decompose a Rotation3D object into a rotation around an axis.
A decorator for a particle with x,y,z coordinates.
Definition: XYZ.h:30
ProteomicsData * read_proteomics_data(const char *proteomics_fn)
Proteomics reader.
def get_placement_score_from_coordinates
Computes the position error (placement distance) and the orientation error (placement angle) of the c...
Definition: cluster.py:162
def do_clustering
Cluster configurations for a model based on RMSD.
Definition: cluster.py:113
IMP-specific subclass of argparse.ArgumentParser.
Definition: __init__.py:9592
Vector3D get_centroid(const Vector3Ds &ps)
Return the centroid of a set of vectors.
Definition: Vector3D.h:68
void set_log_level(LogLevel l)
Set the current global log level.
IntsList read_paths(const char *txt_filename, int max_paths=INT_MAX)
Read paths.
FittingSolutionRecords read_fitting_solutions(const char *fitting_fn)
Fitting solutions reader.
def get_cc
bb_native = self.dmap.get_bounding_box() bb_solution = IMP.core.get_bounding_box(IMP.core.XYZs(ps)) bounding box enclosing both the particles of the native assemblyand the particles of the modelbb_union = IMP.algebra.get_union(bb_native, bb_solution) add border of 4 voxelsborder = 4*voxel_size bottom = bb_union.get_corner(0) bottom += IMP.algebra.Vector3D(-border, -border, -border) top = bb_union.get_corner(1) top += IMP.algebra.Vector3D(border, border, border) bb_union = IMP.algebra.BoundingBox3D(bottom, top)
Definition: cluster.py:189
double get_resolution(Model *m, ParticleIndex pi)
Estimate the resolution of the hierarchy as used by Representation.
Transformation3D get_transformation_aligning_first_to_second(Vector3Ds a, Vector3Ds b)
Select hierarchy particles identified by the biological name.
Definition: Selection.h:70