home
about
news
download
doc
source
systems
tests
bugs
contact
IMP Reference Guide
develop.330bebda01,2025/01/21
The Integrative Modeling Platform
IMP Manual
Reference Guide
Tutorial Index
Modules
Classes
Examples
include
IMP
saxs
version 20250121.develop.330bebda01
ProfileClustering.h
Go to the documentation of this file.
1
/**
2
* \file IMP/saxs/ProfileClustering.h
3
* \brief A class for profile clustering
4
*
5
* \authors Dina Schneidman
6
* Copyright 2007-2022 IMP Inventors. All rights reserved.
7
*
8
*/
9
10
#ifndef IMPSAXS_PROFILE_CLUSTERING_H
11
#define IMPSAXS_PROFILE_CLUSTERING_H
12
13
#include <
IMP/saxs/Profile.h
>
14
15
IMPSAXS_BEGIN_NAMESPACE
16
17
/** Class for profile clustering */
18
class
IMPSAXSEXPORT
ProfileClustering
{
19
public
:
20
ProfileClustering
(
Profile
* exp_profile,
21
const
Profiles
& profiles,
22
double
chi_percentage = 0.3,
double
chi_threshold = 0.0);
23
24
ProfileClustering
(
Profile
* exp_profile,
25
const
Profiles
& profiles,
26
const
Vector<double>
& scores,
27
double
chi_percentage = 0.3,
double
chi_threshold = 0.0);
28
29
const
Vector<Profiles>
& get_clusters()
const
{
30
return
clusters_;
31
}
32
33
const
Profiles
&
get_representatives
()
const
{
34
return
clustered_profiles_;
35
}
36
37
private
:
38
void
cluster_profiles();
39
void
select_representatives();
40
41
private
:
42
PointerMember<const Profile>
exp_profile_;
43
const
Profiles
profiles_;
44
const
Vector<double>
scores_;
45
46
Vector<double>
chi_scores_;
47
Profiles
clustered_profiles_;
48
Vector<Profiles>
clusters_;
49
double
chi_percentage_;
50
double
chi_threshold_;
51
};
52
53
IMPSAXS_END_NAMESPACE
54
55
#endif
/* IMPSAXS_PROFILE_CLUSTERING_H */
IMP::saxs::Profile
Definition:
Profile.h:34
IMP::Vector
A more IMP-like version of the std::vector.
Definition:
Vector.h:50
IMP::PointerMember
A smart pointer to a ref-counted Object that is a class member.
Definition:
Pointer.h:143
IMP::saxs::ProfileClustering
Definition:
ProfileClustering.h:18
Profile.h
A class for profile storing and computation.
IMP::statistics::get_representatives
Ints get_representatives(Embedding *d, PartitionalClustering *pc)