IMP logo
IMP Reference Guide  develop.d97d4ead1f,2024/11/21
The Integrative Modeling Platform
displaying_ensembles.py
1 ## \example display/displaying_ensembles.py
2 # The script shows a couple experiments with trying to visualize an
3 # ensemble of structures. The ensemble is fairly tight on the assembly
4 # scale, but there is significant variation between the location and
5 # orientation of the individual proteins (which were modeled as rigid
6 # bodies). To save space, the models have had their sidechain atoms
7 # removed.
8 
9 import IMP.display
10 import IMP.atom
11 import sys
12 
14  sys.argv, "Experiments with trying to visualize an ensemble of structures")
15 
16 Segment = IMP.algebra.Segment3D
17 Cylinder = IMP.algebra.Cylinder3D
18 
19 # turn off internal checks to speed things up
20 IMP.set_check_level(IMP.USAGE)
21 
22 
23 def read(m, beyond_file):
24  print("reading")
25  hs = []
26  for i in range(0, beyond_file):
27  # create a simplified version for each chain to speed up computations
29  "ensemble/aligned-" + str(i) + ".pdb")
32  hs.append(hr)
33  for c in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
35  IMP.atom.Chain(c), 4)
36  hr.add_child(simp)
37  IMP.atom.destroy(h)
38  print(" ", i)
39  return hs
40 
41 
42 def add_markers(h, c, w):
43  """Add markers to a the passed conformation. The marker locations are chosen
44  pretty thoughtlessly and don't really illustrate the technique well."""
45  def add_marker(s, name):
46  g = IMP.core.XYZRGeometry(s.get_selected_particles()[0])
47  g.set_name(name)
48  g.set_color(c)
49  w.add_geometry(g)
50  s = IMP.atom.Selection(h, chain='B', residue_index=317)
51  add_marker(s, "m0")
52  s = IMP.atom.Selection(h, chain='G', residue_index=212)
53  add_marker(s, "m1")
54  s = IMP.atom.Selection(h, chain='I', residue_index=237)
55  add_marker(s, "m2")
56  s = IMP.atom.Selection(h, chain='F', residue_index=101)
57  add_marker(s, "m3")
58 
59 
60 def get_nice_name(h):
61  nm = h.get_name()
62  return nm[nm.find('-') + 1:nm.rfind('.')]
63 
64 
65 def add_axis(h, c, w, chain_colors):
66  """Add a coordinate axis to show the relative orientation of the protein"""
67  for hc in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
68  rb = IMP.core.RigidMember(hc).get_rigid_body()
69  g = IMP.display.ReferenceFrameGeometry(rb.get_reference_frame())
70  g.set_name(get_nice_name(h) + "_orient")
71  if c:
72  g.set_color(c)
73  else:
74  g.set_color(chain_colors[IMP.atom.Chain(hc).get_id()])
75  w.add_geometry(g)
76 
77 
78 def add_skeleton(h, c, r, w, chain_colors):
79  """Show the connectivity skeleton of the conformation to give an idea of
80  how things are laid out"""
81  for hc0 in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
82  for hc1 in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
83  if hc1 <= hc0:
84  continue
85  d = ps.evaluate_index(h.get_model(),
86  (hc0.get_particle_index(),
87  hc1.get_particle_index()), None)
88  if d < 1:
89  d0 = IMP.core.XYZ(hc0)
90  d1 = IMP.core.XYZ(hc1)
91  mp = .5 * (d0.get_coordinates() + d1.get_coordinates())
93  Cylinder(Segment(d0.get_coordinates(), mp), r))
94  if c:
95  g.set_color(c)
96  else:
97  g.set_color(chain_colors[IMP.atom.Chain(d0).get_id()])
98  g.set_name(get_nice_name(h) + "_skel")
99  w.add_geometry(g)
101  Cylinder(Segment(d1.get_coordinates(), mp), r))
102  if c:
103  g.set_color(c)
104  else:
105  g.set_color(chain_colors[IMP.atom.Chain(d1).get_id()])
106  g.set_name(get_nice_name(h) + "_skel")
107  w.add_geometry(g)
108 
109 
110 IMP.set_log_level(IMP.TERSE)
111 m = IMP.Model()
112 
113 # change to 46 to display all of them
114 hs = read(m, 3)
115 
116 # used to test of two molecules are touching one another
120 ps.set_log_level(IMP.SILENT)
121 
122 
123 print("creating rigid bodies")
124 base_chains = {}
125 for hc in IMP.atom.get_by_type(hs[0], IMP.atom.CHAIN_TYPE):
126  c = IMP.atom.Chain(hc)
127  base_chains[c.get_id()] = c
128 
129 for i, h in enumerate(hs):
130  for hc in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
131  c = IMP.atom.Chain(hc)
132  if h == hs[0]:
134  else:
135  # Make sure the rigid bodies have equivalent defining reference
136  # frames. If we just used IMP.atom.create_rigid_body, globular
137  # proteins are likely to have different axes computed when
138  # starting in different orientations
140  hc, base_chains[c.get_id()])
141  print(" ", i)
142 
143 chains = IMP.atom.get_by_type(hs[0], IMP.atom.CHAIN_TYPE)
144 chains.sort(key=lambda x: IMP.core.XYZ(x).get_x() + IMP.core.XYZ(x).get_y())
145 chain_colors = {}
146 for i, c in enumerate(chains):
147  id = IMP.atom.Chain(c).get_id()
149  # IMP.display.get_jet_color(f)
150  chain_colors[id] = color
151 
152 w = IMP.display.PymolWriter("markers.pym")
153 add_markers(hs[0], IMP.display.Color(1, 1, 1), w)
154 hso = hs[1:]
155 
156 
157 # sort them spatially so the colors are nicely arranged and allow one to
158 # visually connect the position of one end with that of the other
159 hso.sort(key=lambda h: IMP.core.XYZ(IMP.atom.Selection(
160  h, chain='I', residue_index=237).get_selected_particles()[0]).get_z())
161 print("adding markers", end=' ')
162 for i, h in enumerate(hso):
164  IMP.display.Color(1, 0, 0), IMP.display.Color(0, 0, 1), i / 50.)
165  add_markers(h, c, w)
166  print(" ", i)
167 w = IMP.display.PymolWriter("axis.pym")
168 print("adding axis", end=' ')
169 add_axis(hs[0], IMP.display.Color(1, 1, 1), w, chain_colors)
170 for i, h in enumerate(hs[1:]):
171  add_axis(h, None, w, chain_colors)
172  print(i, end=' ')
173 
174 w = IMP.display.PymolWriter("skeletons.pym")
175 add_skeleton(hs[0], IMP.display.Color(1, 1, 1), 5, w, chain_colors)
176 print("adding skeleton", end=' ')
177 for i, h in enumerate(hs[1:]):
178  add_skeleton(h, None, 1, w, chain_colors)
179  print(" ", i)
Represent an RGB color.
Definition: Color.h:25
Apply a score to a fixed number of close pairs from the two sets.
Return the hierarchy leaves under a particle.
Definition: LeavesRefiner.h:25
Strings setup_from_argv(const Strings &argv, std::string description, std::string positional_description, int num_positional)
Upper bound harmonic function (non-zero when feature > mean)
IMP::core::RigidBody create_compatible_rigid_body(Hierarchy h, Hierarchy reference)
Rigidify a molecule or collection of molecules.
Represent a cylinder in 3D.
Definition: Cylinder3D.h:27
A score on the distance between the surfaces of two spheres.
Color get_interpolated_rgb(const Color &a, const Color &b, double f)
Return a color interpolated between a and b in RGB space.
Definition: Color.h:151
void read_pdb(TextInput input, int model, Hierarchy h)
Class for storing model, its restraints, constraints, and particles.
Definition: Model.h:86
static Hierarchy setup_particle(Model *m, ParticleIndex pi, ParticleIndexesAdaptor children=ParticleIndexesAdaptor())
Create a Hierarchy of level t by adding the needed attributes.
std::string get_example_path(std::string file_name)
Return the full path to one of this module's example files.
Color get_display_color(unsigned int i)
A decorator for a particle with x,y,z coordinates.
Definition: XYZ.h:30
static const IMP::core::HierarchyTraits & get_traits()
Get the molecular hierarchy HierarchyTraits.
void set_log_level(LogLevel l)
Set the current global log level.
Simple implementation of segments in 3D.
Definition: Segment3D.h:25
Hierarchy create_simplified_along_backbone(Chain input, const IntRanges &residue_segments, bool keep_detailed=false)
IMP::core::RigidBody create_rigid_body(Hierarchy h)
Class to handle individual particles of a Model object.
Definition: Particle.h:43
Write a CGO file with the geometry.
Definition: PymolWriter.h:34
Store info for a chain of a protein.
Definition: Chain.h:61
Select all CA ATOM records.
Definition: pdb.h:142
Output IMP model data in various file formats.
Functionality for loading, creating, manipulating and scoring atomic structures.
Select hierarchy particles identified by the biological name.
Definition: Selection.h:70
void set_check_level(CheckLevel tf)
Control runtime checks in the code.
Definition: exception.h:72
Display an IMP::core::XYZR particle as a ball.
Definition: XYZR.h:151