IMP logo
IMP Reference Guide  develop.78018a392b,2024/05/07
The Integrative Modeling Platform
fit_fft.py
1 #!/usr/bin/env python
2 
3 from __future__ import print_function
4 import math
5 import IMP.multifit
6 import IMP.atom
7 import IMP.em
8 from IMP import ArgumentParser
9 import os
10 import sys
11 
12 __doc__ = "Fit subunits into a density map with FFT."
13 
14 multiproc_exception = None
15 try:
16  import multiprocessing
17  # Detect whether we are running Windows Python via Wine. Wine does not
18  # currently support some named pipe functions which the multiprocessing
19  # module needs: http://bugs.winehq.org/show_bug.cgi?id=17273
20  if sys.platform == 'win32' and 'WINELOADERNOEXEC' in os.environ:
21  multiproc_exception = "Wine does not currently support multiprocessing"
22 except ImportError as detail:
23  multiproc_exception = str(detail)
24 
25 
26 def _get_context():
27  # Use 'forkserver' rather than 'fork' start method if we can; 'fork' does
28  # not work well with multithreaded processes or CUDA
29  if 'forkserver' in multiprocessing.get_all_start_methods():
30  return multiprocessing.get_context('forkserver')
31  else:
32  return multiprocessing.get_context()
33 
34 
35 class Fitter(object):
36 
37  def __init__(
38  self,
39  em_map,
40  spacing,
41  resolution,
42  origin,
43  density_threshold,
44  pdb,
45  fits_fn,
46  angle,
47  num_fits,
48  angles_per_voxel,
49  ref_pdb=''):
50  self.em_map = em_map
51  self.spacing = spacing
52  self.resolution = resolution
53  self.threshold = density_threshold
54  self.originx = origin[0]
55  self.originy = origin[1]
56  self.originz = origin[2]
57  self.pdb = pdb
58  self.fits_fn = fits_fn
59  self.angle = angle
60  self.num_fits = num_fits
61  self.angles_per_voxel = angles_per_voxel
62  self.ref_pdb = ref_pdb
63 
64  def run(self):
65  print("resolution is:", self.resolution)
66  dmap = IMP.em.read_map(self.em_map)
67  dmap.get_header().set_resolution(self.resolution)
68  dmap.update_voxel_size(self.spacing)
69  dmap.set_origin(IMP.algebra.Vector3D(self.originx,
70  self.originy,
71  self.originz))
72  dmap.set_was_used(True)
73  dmap.get_header().show()
74  mdl = IMP.Model()
75  mol2fit = IMP.atom.read_pdb(self.pdb, mdl)
76  mh_xyz = IMP.core.XYZs(IMP.core.get_leaves(mol2fit))
77  _ = IMP.atom.create_rigid_body(mol2fit)
79  ff.set_was_used(True)
80  fits = ff.do_global_fitting(dmap, self.threshold, mol2fit,
81  self.angle / 180.0 * math.pi,
82  self.num_fits, self.spacing, 0.5,
83  True, self.angles_per_voxel)
84  fits.set_was_used(True)
85  final_fits = fits.best_fits_
86  if self.ref_pdb != '':
87  ref_mh = IMP.atom.read_pdb(self.ref_pdb, mdl)
88  ref_mh_xyz = IMP.core.XYZs(IMP.core.get_leaves(ref_mh))
89  cur_low = [1e4, 0]
90  for i, fit in enumerate(final_fits):
91  fit.set_index(i)
92  if self.ref_pdb != '':
93  trans = fit.get_fit_transformation()
94  IMP.atom.transform(mol2fit, trans)
95  rmsd = IMP.atom.get_rmsd(mh_xyz, ref_mh_xyz)
96  if rmsd < cur_low[0]:
97  cur_low[0] = rmsd
98  cur_low[1] = i
99  fit.set_rmsd_to_reference(rmsd)
100  IMP.atom.transform(mol2fit, trans.get_inverse())
101  if self.ref_pdb != '':
102  print('from all fits, lowest rmsd to ref:', cur_low)
103  IMP.multifit.write_fitting_solutions(self.fits_fn, final_fits)
104 
105 
106 def do_work(f):
107  f.run()
108 
109 
110 def parse_args():
111  desc = """Fit subunits into a density map with FFT."""
112  p = ArgumentParser(description=desc)
113  p.add_argument("-c", "--cpu", dest="cpus", type=int, default=1,
114  help="number of cpus to use (default 1)")
115  p.add_argument("-a", "--angle", dest="angle", type=float, default=30,
116  help="angle delta (degrees) for FFT rotational "
117  "search (default 30)")
118 
119  p.add_argument("-n", "--num", dest="num", type=int,
120  default=100, help="Number of fits to report (default 100)")
121 
122  p.add_argument("-v", "--angle_voxel", dest="angle_voxel", type=int,
123  default=10,
124  help="Number of angles to keep per voxel (default 10)")
125 
126  p.add_argument("assembly_file", help="assembly file name")
127 
128  # p.add_argument("-n", "--num", dest="num", type="int",
129  # default=100,
130  # help="Number of fits to report"
131  # "(default 100)")
132 
133  return p.parse_args()
134 
135 
136 def run(asmb_fn, options):
137  if multiproc_exception is None and options.cpus > 1:
138  work_units = []
139  asmb_input = IMP.multifit.read_settings(asmb_fn)
140  asmb_input.set_was_used(True)
141  em_map = asmb_input.get_assembly_header().get_dens_fn()
142  resolution = asmb_input.get_assembly_header().get_resolution()
143  spacing = asmb_input.get_assembly_header().get_spacing()
144  origin = asmb_input.get_assembly_header().get_origin()
145  for i in range(asmb_input.get_number_of_component_headers()):
146  fits_fn = asmb_input.get_component_header(i).get_transformations_fn()
147  pdb_fn = asmb_input.get_component_header(i).get_filename()
148  f = Fitter(
149  em_map,
150  spacing,
151  resolution,
152  origin,
153  asmb_input.get_assembly_header().get_threshold(),
154  pdb_fn,
155  fits_fn,
156  options.angle,
157  options.num,
158  options.angle_voxel)
159  if multiproc_exception is None and options.cpus > 1:
160  work_units.append(f)
161  else:
162  if options.cpus > 1:
163  options.cpus = 1
164  print("""
165 The Python 'multiprocessing' module (available in Python 2.6 and later) is
166 needed to run on multiple CPUs, and could not be found
167 (Python error: '%s').
168 Running on a single processor.""" % multiproc_exception, file=sys.stderr)
169  f.run()
170  if multiproc_exception is None and options.cpus > 1:
171  # No point in spawning more processes than components
172  nproc = min(options.cpus, asmb_input.get_number_of_component_headers())
173  ctx = _get_context()
174  p = ctx.Pool(processes=nproc)
175  _ = list(p.imap_unordered(do_work, work_units))
176  p.close()
177 
178 
179 def main():
180  args = parse_args()
181  run(args.assembly_file, args)
182 
183 
184 if __name__ == "__main__":
185  main()
Fit a molecule inside its density by local or global FFT.
SettingsData * read_settings(const char *filename)
GenericHierarchies get_leaves(Hierarchy mhd)
Get all the leaves of the bit of hierarchy.
void read_pdb(TextInput input, int model, Hierarchy h)
Class for storing model, its restraints, constraints, and particles.
Definition: Model.h:86
double get_rmsd(const Selection &s0, const Selection &s1)
void transform(Hierarchy h, const algebra::Transformation3D &tr)
Transform a hierarchy. This is aware of rigid bodies.
Fitting atomic structures into a cryo-electron microscopy density map.
Basic utilities for handling cryo-electron microscopy 3D density maps.
void write_fitting_solutions(const char *fitting_fn, const FittingSolutionRecords &fit_sols, int num_sols=-1)
Write fitting solutions to a file.
std::ostream & show(Hierarchy h, std::ostream &out=std::cout)
Print the hierarchy using a given decorator to display each node.
VectorD< 3 > Vector3D
Definition: VectorD.h:408
IMP::core::RigidBody create_rigid_body(Hierarchy h)
double get_resolution(Model *m, ParticleIndex pi)
Estimate the resolution of the hierarchy as used by Representation.
Functionality for loading, creating, manipulating and scoring atomic structures.