Loading [MathJax]/extensions/tex2jax.js
IMP logo
IMP Reference Guide  2.17.0
The Integrative Modeling Platform
SingletonScore.h
Go to the documentation of this file.
1 // Autogenerated by ../../../../tmp/nightly-build-402/imp-2.17.0/tools/build/make_containers.py
2 // from ../../../../tmp/nightly-build-402/imp-2.17.0/tools/build/container_templates/kernel/ClassnameScore.h
3 // Do not edit - any changes will be lost!
4 
5 /**
6  * \file IMP/SingletonScore.h
7  * \brief Define SingletonScore.
8  *
9  * Copyright 2007-2022 IMP Inventors. All rights reserved.
10  */
11 
12 #ifndef IMPKERNEL_SINGLETON_SCORE_H
13 #define IMPKERNEL_SINGLETON_SCORE_H
14 
15 #include <IMP/kernel_config.h>
16 #include "base_types.h"
17 #include "DerivativeAccumulator.h"
18 #include "internal/container_helpers.h"
19 #include <IMP/utility_macros.h>
20 #include "model_object_helpers.h"
21 
22 IMPKERNEL_BEGIN_NAMESPACE
23 
24 //! Abstract class for scoring object(s) of type ParticleIndex.
25 /** SingletonScore will evaluate the score and derivatives
26  for passed object(s) of type ParticleIndex.
27 
28  Use in conjunction with various
29  restraints such as IMP::container::SingletonsRestraint or
30  IMP::core::SingletonRestraint. The restraints couple the score
31  functions with appropriate lists of object(s) of type ParticleIndex.
32 
33  It is possible to call the various evaluate* methods directly, but
34  this is not recommended as they do not ensure that Model invariants
35  (e.g. ScoreStates) are preserved. Use a Restraint or ScoringFunction
36  to score the model instead.
37 
38  Implementers should check out IMP_SINGLETON_SCORE().
39 
40  \see PredicateSingletonRestraint
41 */
42 class IMPKERNELEXPORT SingletonScore : public ParticleInputs,
43  public Object {
44  public:
45  typedef Particle* Argument;
47  typedef Particle* PassArgument;
50  SingletonScore(std::string name = "SingletonScore %1%");
51 
52  //! Compute the score and the derivative if needed.
53  /** @param m the model of vt
54  @param vt the index in m of an object of type Particle
55  @param da a DerivativeAccumulator that weights
56  computed derivatives. If nullptr, derivatives
57  will not be computed.
58  */
59  virtual double evaluate_index(Model *m, ParticleIndex vt,
60  DerivativeAccumulator *da) const = 0;
61 
62  //! Compute the score and the derivative if needed over a set.
63  /** @param m the model of o
64  @param o objects of type Particle, specified by index
65  @param da a derivative accumulator that weights
66  computed derivatives. If nullptr, derivatives
67  will not be computed.
68  @param lower_bound index of first item in o to evaluate
69  @param upper_bound index one past last item in o to evaluate
70 
71  @note Implementations for these are provided by
72  the IMP_SINGLETON_SCORE() macro.
73  */
74  virtual double evaluate_indexes(Model *m, const ParticleIndexes &o,
76  unsigned int lower_bound,
77  unsigned int upper_bound) const;
78 
79  //! Compute the score and the derivative if needed over a set.
80  /** Like regular evaluate_indexes(), but the score for each o[x] is also
81  returned as score[x]. */
82  virtual double evaluate_indexes_scores(
83  Model *m, const ParticleIndexes &o,
85  unsigned int lower_bound,
86  unsigned int upper_bound,
87  std::vector<double> &score) const;
88 
89  //! Compute the change in score and the derivative if needed over a set.
90  /** The score for each o[indexes[x]] is updated in score[indexes[x]]
91  and the total difference between the old and new score values (over the
92  set) is returned. */
93  virtual double evaluate_indexes_delta(
94  Model *m, const ParticleIndexes &o,
96  const std::vector<unsigned> &indexes,
97  std::vector<double> &score) const;
98 
99  //! Compute the score and the derivative if needed, only if "good".
100  /** This functions similarly to evaluate_index(),
101  but may terminate the computation early if the score is higher than max.
102 
103  @return the score if score<= max or some arbitrary value > max otherwise.
104  */
105  virtual double evaluate_if_good_index(Model *m, ParticleIndex vt,
107  double max) const;
108 
109  /** Compute the score and the derivative if needed over a set, only if "good".
110  This functions similarly to evaluate_indexes(), but may terminate
111  the computation early if the total score is higher than max.
112 
113  @return the score if score<= max or some arbitrary value > max otherwise.
114 
115  @note Implementations for these are provided by the IMP_SINGLETON_SCORE()
116  macro.
117  */
118  virtual double evaluate_if_good_indexes(Model *m,
119  const ParticleIndexes &o,
120  DerivativeAccumulator *da, double max,
121  unsigned int lower_bound,
122  unsigned int upper_bound) const;
123 
124  //! Decompose this SingletonScore into a set of
125  //! currently positive restraints over vt.
126  /** The scoring function and derivatives should
127  be equal to the current score. The default implementation
128  returns a single restraint with this score bound to vt,
129  or zero restraints if the score equals zero.
130 . */
131  Restraints create_current_decomposition(Model *m,
132  ParticleIndex vt) const;
133 
134  protected:
135  //! Override this to return your own decomposition.
136  virtual Restraints do_create_current_decomposition(Model *m,
137  ParticleIndex vt) const;
138 
140 };
141 
142 IMPKERNEL_END_NAMESPACE
143 
144 #endif /* IMPKERNEL_SINGLETON_SCORE_H */
A base class for modifiers of ParticlesTemp.
Basic types used by IMP.
Class for adding derivatives from restraints to the model.
Base class for objects that take particle arguments and read from them.
#define IMP_REF_COUNTED_DESTRUCTOR(Name)
Ref counted objects should have private destructors.
Class for storing model, its restraints, constraints, and particles.
Definition: Model.h:73
Common base class for heavy weight IMP objects.
Definition: Object.h:106
Abstract class for scoring object(s) of type ParticleIndex.
Classes used in the construction of ModelObjects.
Various general useful macros for IMP.
Class to handle individual particles of a Model object.
Definition: Particle.h:41
Class for adding derivatives from restraints to the model.