13 def optimize_subsets(subsets):
 
   15     for subset 
in subsets:
 
   24     mdl = ps[0].get_model()
 
   26         mdl.get_root_restraint_set(), ps)
 
   31 def setup_scoring_function(ps):
 
   33     pairs = [[0, 1], [0, 2], [1, 2], [2, 3], [3, 4], [4, 5], [3, 5]]
 
   44 def initiate_configuration(domino_smp, ps):
 
   54         domino_smp.set_particle_states(p, states)
 
   61 mdl.set_log_level(IMP.SILENT)
 
   70 rs = setup_scoring_function(ps)
 
   76 pst = optimize_subsets(subsets)
 
   90 domino_smp.set_restraints([rs])
 
   91 domino_smp.set_maximum_score(.2)
 
   94 initiate_configuration(domino_smp, ps)
 
  100 cs = domino_smp.create_sample()
 
  104 print(
"Found ", cs.get_number_of_configurations(), 
"solutions")
 
  105 for i 
in range(cs.get_number_of_configurations()):
 
  106     cs.load_configuration(i)
 
  108     print(
"solution number:", i, 
" scored:", rs.evaluate(
False))
 
InteractionGraph get_interaction_graph(ScoringFunctionAdaptor rs, const ParticlesTemp &pst)
 
Strings setup_from_argv(const Strings &argv, std::string description, std::string positional_description, int num_positional)
 
SubsetGraph get_junction_tree(const InteractionGraph &ig)
 
Sample best solutions using Domino. 
 
Subsets get_subsets(const SubsetGraph &g)
Gets all of the Subsets of a SubsetGraph. 
 
Distance restraint between two particles. 
 
static XYZ setup_particle(Model *m, ParticleIndex pi)
 
Object used to hold a set of restraints. 
 
Class for storing model, its restraints, constraints, and particles. 
 
Basic functionality that is expected to be used by a wide variety of IMP users. 
 
Class to handle individual particles of a Model object. 
 
Divide-and-conquer inferential optimization in discrete space. 
 
Harmonic function (symmetric about the mean)