12 m.set_log_level(IMP.SILENT)
 
   15 for i, d 
in enumerate(ds):
 
   23     ds[0].get_particle_index(), 
"0 at origin")
 
   27     ds[1].get_particle_index(), 
"1 on axis")
 
   30 for pr 
in [(0, 1), (1, 2), (0, 2)]:
 
   33         (ds[pr[0]].get_particle_index(), ds[pr[1]].get_particle_index()),
 
   48 def setup(cover, scale):
 
   52         pst.set_particle_states(p, st)
 
   54         r.set_maximum_score(.5 * scale ** 2)
 
   61     sampler.set_restraints(rs)
 
   62     sampler.set_subset_filter_tables(fs)
 
   63     sampler.set_log_level(IMP.SILENT)
 
   64     return (sampler, lf, pst)
 
   67 (sampler, lf, pst) = setup(covers[0], 4.0)
 
   70 ac = sampler.get_sample_assignments(subset)
 
   75 def get_mapping(cover0, cover1):
 
   76     nn = IMP.algebra.NearestNeighbor3D(cover0)
 
   77     ret = [[] 
for c 
in cover0]
 
   78     for i, p 
in enumerate(cover1):
 
   79         nns = nn.get_nearest_neighbor(p)
 
   87 def display_mapping(index, cover0, cover1, mapping):
 
   89     for i, c 
in enumerate(mapping):
 
   95     for i, c 
in enumerate(cover0):
 
  102 for curi 
in range(1, len(covers)):
 
  103     scale = 4.0 / 2 ** curi
 
  105     mapping = get_mapping(covers[curi - 1], covers[curi])
 
  107     display_mapping(curi - 1, covers[curi - 1], covers[curi], mapping)
 
  108     (sampler, lf, pst) = setup(covers[curi], scale)
 
  112         for i, p 
in enumerate(subset):
 
  115             lf.set_allowed_states(p, allowed)
 
  116         ccac = sampler.get_sample_assignments(subset)
 
  120     print(
"for scale", scale, 
"got", ac)
 
  122     for i, a 
in enumerate(ac):
 
  128         for c 
in covers[curi]:
 
Maintain an explicit list of what states each particle is allowed to have. 
 
Strings setup_from_argv(const Strings &argv, std::string description, std::string positional_description, int num_positional)
 
static XYZR setup_particle(Model *m, ParticleIndex pi)
 
Sample best solutions using Domino. 
 
A harmonic score on the distance between two spheres. 
 
Filter a configuration of the subset using the Model thresholds. 
 
Represent a subset of the particles being optimized. 
 
Class for storing model, its restraints, constraints, and particles. 
 
Color get_display_color(unsigned int i)
 
Apply a function to the distance to a fixed point. 
 
static Colored setup_particle(Model *m, ParticleIndex pi, Color color)
 
An axis-aligned bounding box. 
 
Basic functionality that is expected to be used by a wide variety of IMP users. 
 
Class to handle individual particles of a Model object. 
 
Write a CGO file with the geometry. 
 
Vector< VectorD< D > > get_grid_interior_cover_by_spacing(const BoundingBoxD< D > &bb, double s)
 
Applies a PairScore to a Pair. 
 
static const FloatKeys & get_xyz_keys()
Get a vector containing the keys for x,y,z. 
 
void load_particle_states(const Subset &s, const Assignment &ss, const ParticleStatesTable *pst)
Load the appropriate state for each particle in a Subset. 
 
Applies a SingletonScore to a Singleton. 
 
Apply a function to an attribute. 
 
Divide-and-conquer inferential optimization in discrete space. 
 
Display an IMP::core::XYZR particle as a ball. 
 
Harmonic function (symmetric about the mean)