IMP  2.0.0
The Integrative Modeling Platform
IMP::gsl::Simplex Class Reference

A simplex optimizer taken from GSL. More...

#include <IMP/gsl/Simplex.h>

+ Inheritance diagram for IMP::gsl::Simplex:

Public Member Functions

 Simplex (Model *m=nullptr)
 
virtual void do_show (std::ostream &out) const
 
- Public Member Functions inherited from IMP::gsl::GSLOptimizer
 GSLOptimizer (Model *m)
 
void set_stop_score (double d)
 Stop the optimization if the score falls below this value.
 
- Public Member Functions inherited from IMP::kernel::Optimizer
 Optimizer (Model *m, std::string name="Optimizer %1%")
 
double get_last_score () const
 Return the score found in the last evaluate.
 
Modelget_model () const
 Get the model being optimized.
 
ScoringFunctionget_scoring_function () const
 Return the scoring function that is being used.
 
bool get_stop_on_good_score () const
 
double optimize (unsigned int max_steps)
 Optimize the model for up to max_steps iterations. More...
 
void set_model (Model *m)
 Set the model being optimized. More...
 
virtual void set_scoring_function (ScoringFunctionAdaptor sf)
 
void set_stop_on_good_score (bool tf)
 
virtual void show (std::ostream &out=std::cout) const
 Print info about the optimizer state. More...
 
void remove_optimizer_state (OptimizerState *d)
 
void remove_optimizer_states (const OptimizerStates &d)
 
void set_optimizer_states (const OptimizerStates &ps)
 
void set_optimizer_states_order (const OptimizerStates &objs)
 
unsigned int add_optimizer_state (OptimizerState *obj)
 
void add_optimizer_states (const OptimizerStates &objs)
 
void clear_optimizer_states ()
 
unsigned int get_number_of_optimizer_states () const
 
bool get_has_optimizer_states ()
 
OptimizerStateget_optimizer_state (unsigned int i) const
 
OptimizerStates get_optimizer_states () const
 
void reserve_optimizer_states (unsigned int sz)
 
- Public Member Functions inherited from IMP::base::Object
virtual void clear_caches ()
 
virtual IMP::base::VersionInfo get_version_info () const =0
 Get information about the module and version of the object.
 
void set_check_level (CheckLevel l)
 
void set_log_level (LogLevel l)
 Set the logging level used in this object. More...
 
void set_was_used (bool tf) const
 
void show (std::ostream &out=std::cout) const
 
const std::string & get_name () const
 
void set_name (std::string name)
 

Parameters

The parameters are:

  • minumum_size: the optimization stops when the size of the simplex falls below this. The size is defined as the average distance from the centroid to the simplex vertices. (Default 0.1)
  • initial_length: the length of the initial sizes of the simplex. Make sure that this covers the optimal solution, given the starting configuration. (Default 1)
Note
Both quantities are relative to rescaled attribues and so should be numbers between 0 and 1.
void set_initial_length (double length)
 
void set_minimum_size (double d)
 

Additional Inherited Members

- Protected Member Functions inherited from IMP::kernel::Optimizer
virtual double do_optimize (unsigned int ns)=0
 override this function to do actual optimization
 
void update_states () const
 Update optimizer states, should be called at each successful step. More...
 
double width (FloatKey k) const
 
FloatIndexes get_optimized_attributes () const
 
void set_value (FloatIndex fi, double v) const
 
Float get_value (FloatIndex fi) const
 
Float get_derivative (FloatIndex fi) const
 
void set_scaled_value (FloatIndex fi, Float v) const
 
double get_scaled_value (FloatIndex fi) const
 
double get_scaled_derivative (FloatIndex fi) const
 
void clear_range_cache ()
 Clear the cache of range information. Do this at the start of optimization.
 

Detailed Description

Simplex works by modifying a simplex in the space of the optimized attributes. The algorithm may not behave well when using score states, such as those involved in rigid bodies, which significantly change the values of the attributes. Then, again, it may work just fine. But be aware that it is not understood.

The main advantage of Simplex is that it is a local optimizer that does not require derivatives.

Definition at line 27 of file Simplex.h.


The documentation for this class was generated from the following file: