[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [IMP-users] Sampling and writing to pym/rmf



Hi Josh, from a very superficial look, your code to write the RMF files seems fine - do you get an output RMF file? Could you load it in Chimera?


On Tue, Jul 1, 2014 at 2:40 AM, Josh Bullock <" target="_blank">> wrote:
Hello,

I'm relatively new to all this so please let me know if i'm making any obvious errors ...

Essentially all i'm trying to do is generate an ensemble of models made from four subunits - constrained by MS connectivity restraints. The models get scored but nothing seems to write to the pymol file. Ideally i'd like to write to an .rmf but i haven't worked that one out either ...

Is this a reasonable way to go about my problem ?

Many thanks,

Josh

-------------------------------------------

import IMP
import IMP.atom
import IMP.rmf
import inspect
import IMP.container
import IMP.display
import IMP.statistics
#import IMP.example
import sys, math, os, optparse
import RMF

from optparse import OptionParser


# Convert the arguments into strings and number
Firstpdb = str(sys.argv[1])
Secondpdb = str(sys.argv[2])
Thirdpdb = str(sys.argv[3])
Fourthpdb = str(sys.argv[4])
models = float(sys.argv[5])

#*****************************************Â

# the spring constant to use, it doesnt really matter
k=100
# the target resolution for the representation, this is used to specify how detailed
# the representation used should be
resolution=300
# the box to perform everythingÂ
bb=IMP.algebra.BoundingBox3D(IMP.algebra.Vector3D(0,0,0),
              ÂIMP.algebra.Vector3D(300, 300, 300))


# this function creates the molecular hierarchies for the various involved proteins
def create_representation():
  m= IMP.Model()
  all=IMP.atom.Hierarchy.setup_particle(IMP.Particle(m))
  all.set_name("the universe")
  # create a protein, represented as a set of connected balls of appropriate
  # radii and number, chose by the resolution parameter and the number of
  # amino acids.
 ÂÂ
  def create_protein_from_pdbs(name, files):
   ÂÂ
    def create_from_pdb(file):
      sls=IMP.SetLogState(IMP.NONE)
      datadir = os.getcwd()
      print datadir
 Ât=IMP.atom.read_pdb( datadir+'/' + file, m,
                ÂIMP.atom.ATOMPDBSelector())
      del sls
      #IMP.atom.show_molecular_hierarchy(t)
      c=IMP.atom.Chain(IMP.atom.get_by_type(t, IMP.atom.CHAIN_TYPE)[0])
      if c.get_number_of_children()==0:
        IMP.atom.show_molecular_hierarchy(t)
      # there is no reason to use all atoms, just approximate the pdb shape instead
      s=IMP.atom.create_simplified_along_backbone(c,
                            resolution/300.0)
      IMP.atom.destroy(t)
      # make the simplified structure rigid
      rb=IMP.atom.create_rigid_body(s)
# Â Â Â Â Â Ârb=IMP.atom.create_rigid_body(c)
      rb.set_coordinates_are_optimized(True)
      return s
#      Âreturn c      Â

    h= create_from_pdb(files[0])
    h.set_name(name)
    all.add_child(h)

  create_protein_from_pdbs("A", [Firstpdb])
  create_protein_from_pdbs("B", [Secondpdb])
  create_protein_from_pdbs("C", [Thirdpdb])
  create_protein_from_pdbs("D", [Fourthpdb])
  #create_protein_from_pdbs("C", ["rpt3_imp.pdb"])
  return (m, all)

# create the needed restraints and add them to the model

def create_restraints(m, all):
  def add_connectivity_restraint(s):
Â
    tr= IMP.core.TableRefiner()
    rps=[]
    for sc in s:
      ps= sc.get_selected_particles()     ÂÂ
      rps.append(ps[0])
      tr.add_particle(ps[0], ps)
     ÂÂ
    # duplicate the IMP.atom.create_connectivity_restraint functionality
   ÂÂ
    score= IMP.core.KClosePairsPairScore(IMP.core.HarmonicSphereDistancePairScore(0,1),tr)
   ÂÂ
    r= IMP.core.MSConnectivityRestraint(m,score)
   ÂÂ
    iA = r.add_type([rps[0]])
    iB = r.add_type([rps[1]])
    iC = r.add_type([rps[2]])
    iD = r.add_type([rps[3]])
    n1 = r.add_composite([iA, iB, iC, iD])
    n2 = r.add_composite([iA, iB], n1)
    n3 = r.add_composite([iC, iD], n1)
    n4 = r.add_composite([iB, iC, iD], n1)

    m.add_restraint(r)

  evr=IMP.atom.create_excluded_volume_restraint([all])
  m.add_restraint(evr)
  # a Selection allows for natural specification of what the restraints act on
  S= IMP.atom.Selection
  sA=S(hierarchy=all, molecule="A")
  sB=S(hierarchy=all, molecule="B")
  sC=S(hierarchy=all, molecule="C")
  sD=S(hierarchy=all, molecule="D")
  add_connectivity_restraint([sA, sB, sC, sD])
 ÂÂ

# find acceptable conformations of the model
def get_conformations(m):
  sampler= IMP.core.MCCGSampler(m)
  sampler.set_bounding_box(bb)
  # magic numbers, experiment with them and make them large enough for things to work
  sampler.set_number_of_conjugate_gradient_steps(100)
  sampler.set_number_of_monte_carlo_steps(20)
  sampler.set_number_of_attempts(models)
  # We don't care to see the output from the sampler
  sampler.set_log_level(IMP.SILENT)
  # return the IMP.ConfigurationSet storing all the found configurations that
  # meet the various restraint maximum scores.
  cs= sampler.create_sample()
  return cs
 ÂÂ

# cluster the conformations and write them to a file
def analyze_conformations(cs, all, gs):
  # we want to cluster the configurations to make them easier to understand
  # in the case, the clustering is pretty meaningless
  embed= IMP.statistics.ConfigurationSetXYZEmbedding(cs,
        ÂIMP.container.ListSingletonContainer(IMP.atom.get_leaves(all)), True)
  cluster= IMP.statistics.create_lloyds_kmeans(embed, 10, 10000)
  # dump each cluster center to a file so it can be viewed.
  for i in range(cluster.get_number_of_clusters()):
    center= cluster.get_cluster_center(i)
    cs.load_configuration(i)
    w= IMP.display.PymolWriter("cluster.%d.pym"%i)
    for g in gs:
      w.add_geometry(g)


#******************************************************************************************
# now do the actual work

(m,all)= create_representation()
IMP.atom.show_molecular_hierarchy(all)
create_restraints(m, all)

# in order to display the results, we need something that maps the particles onto
# geometric objets. The IMP.display.Geometry objects do this mapping.
# IMP.display.XYZRGeometry map an IMP.core.XYZR particle onto a sphere
gs=[]
for i in range(all.get_number_of_children()):
  color= IMP.display.get_display_color(i)
  n= all.get_child(i)
  name= n.get_name()
  g= IMP.atom.HierarchyGeometry(n)
  g.set_color(color)
  gs.append(g)

cs= get_conformations(m)

print "found", cs.get_number_of_configurations(), "solutions"

ListScores = []
for i in range(0, cs.get_number_of_configurations()):
    cs.load_configuration(i)
    # print the configuration
    print "solution number: ",i,"scored :", m.evaluate(False)
    ListScores.append(m.evaluate(False))
   ÂÂ
f1 = open("out_scores.csv", "w")
f1.write("\n".join(map(lambda x: str(x), ListScores)))
f1.close()

# for each of the configuration, dump it to a file to view in pymol
for i in range(0, cs.get_number_of_configurations()):
  JOSH = cs.load_configuration(i)
  S= IMP.atom.Selection
  h= IMP.atom.Hierarchy.get_children(cs)
  tfn = IMP.create_temporary_file_name("josh%d"%i, ".rmf")
  rh = RMF.create_rmf_file(tfn)
 Â
  # add the hierarchy to the file
  IMP.rmf.add_hierarchies(rh, h)
 ÂÂ
  # add the current configuration to the file as frame 0
  IMP.rmf.save_frame(rh)
 ÂÂ
  for g in gs:
    w.add_geometry(g)

analyze_conformations(cs, all, gs)


_______________________________________________
IMP-users mailing list
">
https://salilab.org/mailman/listinfo/imp-users




--
Barak