Loading [MathJax]/jax/input/TeX/config.js
IMP logo
IMP Reference Guide  2.7.0
The Integrative Modeling Platform
nup84.py
1 ## \example kernel/nup84.py
2 # Modify solve for a Nup84-like structure using a mix of rigid bodies
3 # and coarse grained models using crosslinking data. In
4 # addition, show how to visualize restraints and visualize the
5 # rejected conformations. Both are useful things to do when trying to
6 # figure out why optimization is not converging.
7 
8 from __future__ import print_function
9 import IMP
10 import IMP.atom
11 import IMP.container
12 import IMP.display
13 import IMP.statistics
14 import IMP.example
15 import os
16 import sys
17 
18 # not finished
19 IMP.add_bool_flag("run", "Whether to run the program")
20 
21 # parse command line arguments so, eg profiling can be used
22 IMP.setup_from_argv(sys.argv, "Nup84 example")
23 
24 if IMP.get_bool_flag("run") != "yes":
25  exit(0)
26 
27 # First we define some basic parameters for the modeling effort
28 
29 # the spring constant to use, it doesn't really matter
30 k = 10
31 # the target resolution for the representation
32 resolution = 100
33 # the box to perform everything in, make it flat as it is a 2D structure
35  IMP.algebra.Vector3D(300, 300, 50))
36 
37 # how many times to try to find a good solution
38 number_of_sampling_attempts = 1
39 number_of_mc_steps = 10000
40 
41 # Create a coarse grained protein with a given name, adding it to universe
42 
43 
44 def add_protein_from_length(model, name, residues, parent, restraints,
45  excluded_volume_particles, optimized_particles):
46  # Create a coarse grained protein with the passed residue information
47  h = IMP.atom.create_protein(model, name, resolution, residues)
48 
49  parent.add_child(h)
50  # Here, each of the constituent particles will be optimized independently
51  leaves = IMP.atom.get_leaves(h)
52  optimized_particles.extend(leaves)
53  excluded_volume_particles.extend(leaves)
54 
55  # Ensure that the various particles of the protein stay connected
57  for c in h.get_children()], k,
58  "connect " + name)
59 
60  if r:
61  # make sure there is an actual restraint
62  restraints.append(r)
63  r.set_maximum_score(k)
64 
65 # Create protein as a rigid body from a pdb file
66 
67 
68 def add_protein_from_pdb(model, name, file, parent, restraints,
69  excluded_volume_particles, optimized_particles):
70  # we should keep the original particles around so they get written
71 
72  # create an atomic representation from the pdb file
74  IMP.get_example_path(os.path.join("data", file)), model,
76  # extract the chain from the file
77  c = IMP.atom.Chain(IMP.atom.get_by_type(t, IMP.atom.CHAIN_TYPE)[0])
78  # there is no reason to use all atoms, just approximate the pdb shape
79  # instead
80  s = IMP.atom.create_simplified_along_backbone(c, resolution / 2.0, True)
81  s.set_name(name)
82  # tear down what is left
83  IMP.atom.destroy(t)
84  # make the simplified structure rigid
86  rb.set_coordinates_are_optimized(True)
87  optimized_particles.append(rb)
88  excluded_volume_particles.extend(s.get_children())
89  parent.add_child(s)
90 
91 
92 # Create protein as a rigid body from several pdb file
93 def add_protein_from_pdbs(model, name, files, parent, restraints,
94  excluded_volume_particles, optimized_particles):
96  for i, f in enumerate(files):
97  add_protein_from_pdb(model, name + str(i), f, h, restraints,
98  excluded_volume_particles, optimized_particles)
99  r = IMP.atom.create_connectivity_restraint([IMP.atom.Selection(c, hierarchy_types=[IMP.atom.FRAGMENT_TYPE])
100  for c in h.get_children()],
101  k, "connect " + name)
102  if r:
103  restraints.append(r)
104  r.set_maximum_score(k)
105 
106 # Create all the needed representation using the above functions
107 
108 
109 def create_representation(model):
110  restraints = []
111  optimized_particles = []
112  excluded_volume_particles = []
114  IMP.Particle(model, "the universe"))
115 
116  add_protein_from_length(model, "Nup85", 570, universe, restraints,
117  excluded_volume_particles, optimized_particles)
118 
119  # pin the c-terminus
120  ct = IMP.atom.Selection(universe, molecule="Nup85",
121  hierarchy_types=[IMP.atom.FRAGMENT_TYPE],
122  terminus=IMP.atom.Selection.C)
123  d = IMP.core.XYZ(ct.get_selected_particles()[0])
124  d.set_coordinates(IMP.algebra.Vector3D(0, 0, 0))
125  d.set_coordinates_are_optimized(False)
126 
127  add_protein_from_length(model, "Nup84", 460, universe, restraints,
128  excluded_volume_particles, optimized_particles)
129  add_protein_from_length(model, "Nup145C", 442, universe, restraints,
130  excluded_volume_particles, optimized_particles)
131  add_protein_from_length(
132  model, "Nup120", [0, 500, 761], universe, restraints,
133  excluded_volume_particles, optimized_particles)
134  add_protein_from_length(
135  model, "Nup133", [0, 450, 778, 1160], universe, restraints,
136  excluded_volume_particles, optimized_particles)
137  add_protein_from_pdb(model, "Seh1", "seh1.pdb", universe, restraints,
138  excluded_volume_particles, optimized_particles)
139  add_protein_from_pdb(model, "Sec13", "sec13.pdb", universe, restraints,
140  excluded_volume_particles, optimized_particles)
141  return universe, restraints, excluded_volume_particles, optimized_particles
142 
143 
144 def add_distance_restraint(selection0, selection1, name, restraints):
145  r = IMP.atom.create_distance_restraint(selection0, selection1, 0, k, name)
146  r.set_maximum_score(k)
147  restraints.append(r)
148 
149 
150 def encode_data_as_restraints(universe, restraints):
151  s0 = IMP.atom.Selection(
152  hierarchy=universe, hierarchy_types=[IMP.atom.FRAGMENT_TYPE],
153  molecule="Nup145C", residue_indexes=[(0, 423)])
154  s1 = IMP.atom.Selection(
155  hierarchy=universe, hierarchy_types=[IMP.atom.FRAGMENT_TYPE],
156  molecule="Nup84")
157  s2 = IMP.atom.Selection(
158  hierarchy=universe, hierarchy_types=[IMP.atom.FRAGMENT_TYPE],
159  molecule="Sec13")
161  [s0, s1, s2], k, "Nup145C Nup84 Sec13")
162  r.set_maximum_score(k)
163  restraints.append(r)
164 
165  add_distance_restraint(
166  IMP.atom.Selection(hierarchy=universe, molecule="Nup145C",
167  residue_indexes=[(0, 423)],
168  hierarchy_types=[
169  IMP.atom.FRAGMENT_TYPE]),
171  hierarchy=universe, molecule="Nup85",
172  hierarchy_types=[
173  IMP.atom.FRAGMENT_TYPE]),
174  "Num145C, Nup85", restraints)
175  add_distance_restraint(
176  IMP.atom.Selection(hierarchy=universe, molecule="Nup145C",
177  residue_indexes=[(0, 423)],
178  hierarchy_types=[
179  IMP.atom.FRAGMENT_TYPE]),
181  hierarchy=universe, molecule="Nup120",
182  residue_indexes=[(500, 762)],
183  hierarchy_types=[
184  IMP.atom.FRAGMENT_TYPE]),
185  "Nup145C Nup120", restraints)
186  add_distance_restraint(
187  IMP.atom.Selection(hierarchy=universe, molecule="Nup84",
188  hierarchy_types=[
189  IMP.atom.FRAGMENT_TYPE]),
191  hierarchy=universe, molecule="Nup133",
192  residue_indexes=[(778, 1160)],
193  hierarchy_types=[
194  IMP.atom.FRAGMENT_TYPE]),
195  "Nup84 Nup133", restraints)
196  add_distance_restraint(
197  IMP.atom.Selection(hierarchy=universe, molecule="Nup85",
198  hierarchy_types=[
199  IMP.atom.FRAGMENT_TYPE]),
201  hierarchy=universe, molecule="Seh1",
202  hierarchy_types=[
203  IMP.atom.FRAGMENT_TYPE]),
204  "Nup85 Seh1", restraints)
205  add_distance_restraint(
206  IMP.atom.Selection(hierarchy=universe, molecule="Nup145C",
207  residue_indexes=[(0, 423)],
208  hierarchy_types=[
209  IMP.atom.FRAGMENT_TYPE]),
211  hierarchy=universe, molecule="Sec13",
212  hierarchy_types=[
213  IMP.atom.FRAGMENT_TYPE]),
214  "Nup145C Sec13", restraints)
215 
216 
217 # find acceptable conformations of the model
218 def get_configurations(
219  model,
220  restraints,
221  excluded_volume_particles,
222  optimized_particles):
223  #cpc= IMP.container.ClosePairContainer(representation.get_particles(), 0, 10)
224  # evr= IMP.container.PairRestraint(IMP.core.SoftSpherePairScore(k), cpc,
225  # "Excluded Volume")
226  scale = .5
227  mc = IMP.core.MonteCarlo(model)
228  movers = []
229  for p in optimized_particles:
231  mover = IMP.core.RigidBodyMover(
232  p, IMP.core.XYZR(p).get_radius() * scale,
233  .2 * scale)
234  movers.append(mover)
235  else:
236  mover = IMP.core.BallMover(model,
237  [p], IMP.core.XYZR(p).get_radius() * scale)
238  movers.append(mover)
239  serial_mover = IMP.core.SerialMover(movers)
240  mc.add_mover(serial_mover)
241  scoring_function = IMP.core.IncrementalScoringFunction(
242  optimized_particles, restraints)
243  scoring_function.add_close_pair_score(IMP.core.SoftSpherePairScore(k), 0.0,
244  excluded_volume_particles)
245 
246  configuration_set = IMP.ConfigurationSet(model)
247  # must write our own sampler as IMP.core.MCCGSampler doesn't handle rigid
248  # bodies
249  for i in range(number_of_sampling_attempts):
250  for p in optimized_particles:
251  IMP.core.XYZ(p).set_coordinates(
253  mc.optimize(number_of_mc_steps)
254  if scoring_function.get_had_good_score():
255  configuration_set.save()
256  return configuration_set
257 
258 
259 model = IMP.Model()
260 universe, restraints, excluded_volume_particles, optimized_particles = create_representation(
261  model)
262 encode_data_as_restraints(universe, restraints)
263 
264 configuration_set = get_configurations(model, restraints,
265  excluded_volume_particles,
266  optimized_particles)
267 
268 print("Found", configuration_set.get_number_of_configurations(), "good configurations")
269 
270 # now lets save them all to a file
271 rmf_file_name = IMP.create_temporary_file_name("nup84", ".rmf")
272 rmf = RMF.create_rmf_file(rmf_file_name)
273 
274 # we want to see the scores of the various restraints also
275 IMP.rmf.add_restraints(rmf, restraints)
276 # and the actual structures
277 IMP.rmf.add_hierarchy(rmf, universe)
278 
279 for i in range(0, configuration_set.get_number_of_configurations()):
280  configuration_set.load_configuration(i)
281  # align all the configurations with the first so they display nicely
282  # if we want to be fancy we can account for flips too
283  if i == 0:
284  base_coords = [IMP.core.XYZ(p).get_coordinates()
285  for p in optimized_particles]
286  else:
287  tr = IMP.algebra.get_transform_taking_first_to_second(
288  optimized_particles, base_coords)
289  IMP.core.transform(optimized_particles, tr)
290  # update the restraint scores
291  sf.evaluate(False)
292  IMP.rmf.save_frame(rmf, str(i))
293 
294 print("You can now open", rmf_file_name, "in chimera")
A Monte Carlo optimizer.
Definition: MonteCarlo.h:45
RMF::FrameID save_frame(RMF::FileHandle file, std::string name="")
Save the current state of the linked objects as a new RMF frame.
Strings setup_from_argv(const Strings &argv, std::string description, std::string positional_description, int num_positional)
Various classes to hold sets of particles.
bool get_bool_flag(std::string name)
Modify the transformation of a rigid body.
Move continuous particle variables by perturbing them within a ball.
void read_pdb(TextInput input, int model, Hierarchy h)
Vector3D get_random_vector_in(const Cylinder3D &c)
Generate a random vector in a cylinder with uniform density.
Code to compute statistical measures.
Class for storing model, its restraints, constraints, and particles.
Definition: Model.h:72
Hierarchy create_protein(Model *m, std::string name, double target_radius, const Ints domain_boundaries)
Select all non-alternative ATOM records.
Definition: pdb.h:64
static Hierarchy setup_particle(Model *m, ParticleIndex pi, ParticleIndexesAdaptor children=ParticleIndexesAdaptor())
Create a Hierarchy of level t by adding the needed attributes.
void add_hierarchy(RMF::FileHandle fh, atom::Hierarchy hs)
void transform(XYZ a, const algebra::Transformation3D &tr)
Apply a transformation to the particle.
A class to store a set of configurations of a model.
A decorator for a particle with x,y,z coordinates.
Definition: XYZ.h:30
void add_restraints(RMF::NodeHandle fh, const Restraints &hs)
static bool get_is_setup(const IMP::ParticleAdaptor &p)
Definition: rigid_bodies.h:147
Example module.
std::string get_example_path(std::string file_name)
Return the full path to one of this module's example files.
Hierarchy create_simplified_along_backbone(Chain input, const IntRanges &residue_segments, bool keep_detailed=false)
VectorD< 3 > Vector3D
Definition: VectorD.h:395
IMP::core::RigidBody create_rigid_body(Hierarchy h)
Class to handle individual particles of a Model object.
Definition: Particle.h:41
Restraint * create_distance_restraint(const Selection &n0, const Selection &n1, double x0, double k, std::string name="Distance%1%")
Store info for a chain of a protein.
Definition: Chain.h:21
Restraint * create_connectivity_restraint(const Selections &s, double x0, double k, std::string name="Connectivity%1%")
Create a restraint connecting the selections.
Score the model efficiently when a small number of particles are changed.
Output IMP model data in various file formats.
Functionality for loading, creating, manipulating and scoring atomic structures.
void add_bool_flag(std::string name, std::string description)
Hierarchies get_leaves(const Selection &h)
Select hierarchy particles identified by the biological name.
Definition: Selection.h:66
Applies a list of movers one at a time.
Definition: SerialMover.h:23
std::string create_temporary_file_name(std::string prefix="imp_temp", std::string suffix="")
Create a temporary file.
A decorator for a particle with x,y,z coordinates and a radius.
Definition: XYZR.h:27