![]() |
IMP
2.2.1
The Integrative Modeling Platform
|
#include <IMP/score_functor/Score.h>
Inheritance diagram for IMP::score_functor::Score:Public Member Functions | |
| kernel::ModelObjectsTemp | get_inputs (kernel::Model *m, const kernel::ParticleIndexes &pis) const |
| template<unsigned int D> | |
| bool | get_is_trivially_zero (kernel::Model *m, const base::Array< D, kernel::ParticleIndex > &p, double squared_distance) const |
| template<unsigned int D> | |
| double | get_maximum_range (kernel::Model *m, const base::Array< D, kernel::ParticleIndex > &p) const |
| template<unsigned int D> | |
| double | get_score (kernel::Model *m, const base::Array< D, kernel::ParticleIndex > &p, double distance) const |
| template<unsigned int D> | |
| DerivativePair | get_score_and_derivative (kernel::Model *m, const base::Array< D, kernel::ParticleIndex > &p, double distance) const |
| void | show (std::ostream &) const |
A functor for computing a distance based score for two particles.
| kernel::ModelObjectsTemp IMP::score_functor::Score::get_inputs | ( | kernel::Model * | m, |
| const kernel::ParticleIndexes & | pis | ||
| ) | const |
| bool IMP::score_functor::Score::get_is_trivially_zero | ( | kernel::Model * | m, |
| const base::Array< D, kernel::ParticleIndex > & | p, | ||
| double | squared_distance | ||
| ) | const |
| double IMP::score_functor::Score::get_maximum_range | ( | kernel::Model * | m, |
| const base::Array< D, kernel::ParticleIndex > & | p | ||
| ) | const |
| double IMP::score_functor::Score::get_score | ( | kernel::Model * | m, |
| const base::Array< D, kernel::ParticleIndex > & | p, | ||
| double | distance | ||
| ) | const |
Return the score at the passed feature size (eg distance). The involved particle indexes are passed along.
| DerivativePair IMP::score_functor::Score::get_score_and_derivative | ( | kernel::Model * | m, |
| const base::Array< D, kernel::ParticleIndex > & | p, | ||
| double | distance | ||
| ) | const |
Return the score and derivative at the passed feature size (eg distance). The derivative is for the feature decreasing.