IMP  2.2.1
The Integrative Modeling Platform
IMP::isd::vonMises Class Reference

vonMises More...

#include <IMP/isd/vonMises.h>

+ Inheritance diagram for IMP::isd::vonMises:

Public Member Functions

 vonMises (double x, double mu, double kappa)
 
virtual double density () const
 
virtual double evaluate () const
 
virtual double evaluate_derivative_kappa () const
 
virtual double evaluate_derivative_mu () const
 
virtual double evaluate_derivative_x () const
 
virtual std::string get_type_name () const
 
virtual ::IMP::base::VersionInfo get_version_info () const
 Get information about the module and version of the object.
 
void set_kappa (double kappa)
 
void set_mu (double mu)
 
void set_x (double x)
 
- Public Member Functions inherited from IMP::base::Object
virtual void clear_caches ()
 
virtual void do_destroy ()
 
CheckLevel get_check_level () const
 
LogLevel get_log_level () const
 
void set_check_level (CheckLevel l)
 
void set_log_level (LogLevel l)
 Set the logging level used in this object. More...
 
void set_was_used (bool tf) const
 
void show (std::ostream &out=std::cout) const
 
const std::string & get_name () const
 
void set_name (std::string name)
 

Additional Inherited Members

- Protected Member Functions inherited from IMP::base::Object
 Object (std::string name)
 Construct an object with the given name. More...
 

Detailed Description

Probability density function and -log(p) of von Mises distribution

\[ f(x|\mu,\kappa) = \frac{\exp \left(\kappa \cos (x-\mu)\right)}{2\pi I_0(\kappa)} \]

This is the proper treatment for a "normally distributed" angle. When \(\kappa\) becomes infinite, the distribution tends to a gaussian, and \(\kappa = 1/\sigma^2\).

Definition at line 28 of file vonMises.h.


The documentation for this class was generated from the following file: