IMP
2.2.1
The Integrative Modeling Platform
|
#include <IMP/isd/vonMises.h>
Public Member Functions | |
vonMises (double x, double mu, double kappa) | |
virtual double | density () const |
virtual double | evaluate () const |
virtual double | evaluate_derivative_kappa () const |
virtual double | evaluate_derivative_mu () const |
virtual double | evaluate_derivative_x () const |
virtual std::string | get_type_name () const |
virtual ::IMP::base::VersionInfo | get_version_info () const |
Get information about the module and version of the object. | |
void | set_kappa (double kappa) |
void | set_mu (double mu) |
void | set_x (double x) |
Public Member Functions inherited from IMP::base::Object | |
virtual void | clear_caches () |
virtual void | do_destroy () |
CheckLevel | get_check_level () const |
LogLevel | get_log_level () const |
void | set_check_level (CheckLevel l) |
void | set_log_level (LogLevel l) |
Set the logging level used in this object. More... | |
void | set_was_used (bool tf) const |
void | show (std::ostream &out=std::cout) const |
const std::string & | get_name () const |
void | set_name (std::string name) |
Additional Inherited Members | |
Protected Member Functions inherited from IMP::base::Object | |
Object (std::string name) | |
Construct an object with the given name. More... | |
Probability density function and -log(p) of von Mises distribution
\[ f(x|\mu,\kappa) = \frac{\exp \left(\kappa \cos (x-\mu)\right)}{2\pi I_0(\kappa)} \]
This is the proper treatment for a "normally distributed" angle. When \(\kappa\) becomes infinite, the distribution tends to a gaussian, and \(\kappa = 1/\sigma^2\).
Definition at line 28 of file vonMises.h.