IMP  2.1.1
The Integrative Modeling Platform
IMP::isd::FNormal Class Reference

FNormal. More...

#include <IMP/isd/FNormal.h>

+ Inheritance diagram for IMP::isd::FNormal:

Public Member Functions

 FNormal (double FA, double JA, double FM, double sigma)
 
virtual double density () const
 
virtual double evaluate () const
 
virtual double evaluate_derivative_FA () const
 
virtual double evaluate_derivative_FM () const
 
virtual double evaluate_derivative_JA () const
 
virtual double evaluate_derivative_sigma () const
 
virtual std::string get_type_name () const
 
virtual ::IMP::base::VersionInfo get_version_info () const
 Get information about the module and version of the object.
 
void set_FA (double f)
 
void set_FM (double f)
 
void set_JA (double f)
 
void set_sigma (double f)
 
- Public Member Functions inherited from IMP::base::Object
virtual void clear_caches ()
 
virtual void do_destroy ()
 
CheckLevel get_check_level () const
 
LogLevel get_log_level () const
 
void set_check_level (CheckLevel l)
 
void set_log_level (LogLevel l)
 Set the logging level used in this object. More...
 
void set_was_used (bool tf) const
 
void show (std::ostream &out=std::cout) const
 
const std::string & get_name () const
 
void set_name (std::string name)
 

Additional Inherited Members

- Protected Member Functions inherited from IMP::base::Object
 Object (std::string name)
 Construct an object with the given name. More...
 
 Object ()
 

Detailed Description

Probability density function and -log(p) of normal sampling from some function F. If A is drawn from the F-Normal distribution then F(A) is drawn from a normal distribution with mean M and standard deviation sigma. Arguments: F(A), J(A) the derivative of F w/r to A, F(M) and sigma. The distribution is normalized with respect to the variable A.

Example: if F is the log function, the F-normal distribution is the lognormal distribution with mean M and standard deviation sigma.

NOTE: for now, F must be monotonically increasing, so that JA > 0. The program will not check for that.

Definition at line 32 of file FNormal.h.


The documentation for this class was generated from the following file: