3 __doc__ =
"Score each of a set of combinations."
7 from IMP
import OptionParser
12 colors[
"Rpt1"] = [0.78, 0.78, 0.73]
13 colors[
"Rpt2"] = [0.78, 0.66, 0.58]
14 colors[
"Rpt3"] = [0.77, 0.43, 0.5]
15 colors[
"Rpt4"] = [0.76, 0.29, 0.67]
16 colors[
"Rpt5"] = [0.51, 0.14, 0.75]
17 colors[
"Rpt6"] = [0.0, 0., 0.75]
18 colors[
"Rpn1"] = [0.34, 0.36, 0.27]
19 colors[
"Rpn2"] = [0.42, 0.43, 0.36]
20 colors[
"Rpn3"] = [0.49, 0.5, 0.44]
21 colors[
"Rpn5"] = [0.56, 0.57, 0.51]
22 colors[
"Rpn6"] = [0.64, 0.64, 0.59]
23 colors[
"Rpn7"] = [0.71, 0.71, 0.66]
24 colors[
"Rpn8"] = [0.78, 0.78, 0.74]
25 colors[
"Rpn9"] = [1, 0, 0]
26 colors[
"Rpn10"] = [0, 1, 0]
27 colors[
"Rpn11"] = [0, 0, 1]
28 colors[
"Rpn12"] = [0.5, 0.2, 0.4]
29 colors[
"a1"] = [0.78, 0.78, 0.73]
30 colors[
"a2"] = [0.78, 0.66, 0.58]
31 colors[
"a3"] = [0.77, 0.43, 0.5]
32 colors[
"a4"] = [0.76, 0.29, 0.67]
33 colors[
"a5"] = [0.51, 0.14, 0.75]
34 colors[
"a6"] = [0.0, 0., 0.75]
35 colors[
"a7"] = [0.34, 0.36, 0.27]
36 colors[
"a8"] = [0.42, 0.43, 0.36]
37 colors[
"a9"] = [0.49, 0.5, 0.44]
38 colors[
"a10"] = [0.56, 0.57, 0.51]
40 colors[
"a11"] = [0.78, 0.78, 0.73]
41 colors[
"a12"] = [0.78, 0.66, 0.58]
42 colors[
"a13"] = [0.77, 0.43, 0.5]
43 colors[
"a14"] = [0.76, 0.29, 0.67]
44 colors[
"a15"] = [0.51, 0.14, 0.75]
45 colors[
"a16"] = [0.0, 0., 0.75]
46 colors[
"a17"] = [0.34, 0.36, 0.27]
47 colors[
"a18"] = [0.42, 0.43, 0.36]
48 colors[
"a19"] = [0.49, 0.5, 0.44]
49 colors[
"a20"] = [0.56, 0.57, 0.51]
51 colors[
"a21"] = [0.78, 0.78, 0.73]
52 colors[
"a22"] = [0.78, 0.66, 0.58]
53 colors[
"a23"] = [0.77, 0.43, 0.5]
54 colors[
"a24"] = [0.76, 0.29, 0.67]
55 colors[
"a25"] = [0.51, 0.14, 0.75]
56 colors[
"a26"] = [0.0, 0., 0.75]
57 colors[
"a27"] = [0.34, 0.36, 0.27]
58 colors[
"a28"] = [0.42, 0.43, 0.36]
59 colors[
"a29"] = [0.49, 0.5, 0.44]
60 colors[
"a30"] = [0.56, 0.57, 0.51]
64 def decompose(dmap, mhs):
69 full_sampled_map.set_particles(all_ps)
70 full_sampled_map.resample()
71 full_sampled_map.calcRMS()
73 dmap.get_number_of_voxels(
75 ).dmean * full_sampled_map.get_header(
78 lower = dmap.get_number_of_voxels(
80 ).rms * full_sampled_map.get_header(
82 norm_factors = [upper, lower]
83 print "===============my norm factors:", upper, lower
87 def score_each_protein(dmap, mhs, sd):
88 norm_factors = decompose(dmap, mhs)
91 mdl = mhs[0].get_model()
92 for i
in range(len(mhs)):
96 mh_dmap.set_particles(leaves)
100 sd.get_component_header(i).get_transformations_fn())
102 for fit
in fits[:15]:
106 cc.cross_correlation_coefficient(
113 scores.append(mh_scores)
114 print "=====mol", i, mh_scores
119 usage =
"""%prog [options] <asmb> <asmb.proteomics> <asmb.mapping>
120 <alignment.params> <combinatins> <score combinations [output]>
122 Score each of a set of combinations.
125 parser.add_option(
"-m",
"--max", dest=
"max", default=999999999,
126 help=
"maximum number of fits considered")
127 (options, args) = parser.parse_args()
129 parser.error(
"incorrect number of arguments")
130 return [options, args]
133 def run(asmb_fn, proteomics_fn, mapping_fn, params_fn, combs_fn,
134 scored_comb_output_fn, max_comb):
137 dmap.get_header().set_resolution(
139 dmap.update_voxel_size(asmb.get_assembly_header().get_spacing())
140 dmap.set_origin(asmb.get_assembly_header().get_origin())
141 threshold = asmb.get_assembly_header().get_threshold()
144 colors = get_color_map()
145 names = colors.keys()
147 alignment_params = IMP.multifit.AlignmentParams(params_fn)
148 alignment_params.show()
151 print "=========", combs_fn
159 prot_data, mapping_fn)
161 em_anchors = mapping_data.get_anchors()
167 mapping_data, asmb, alignment_params)
168 align.set_fast_scoring(
False)
170 mdl = align.get_model()
171 mhs = align.get_molecules()
172 align.add_states_and_filters()
173 rbs = align.get_rigid_bodies()
175 align.set_density_map(dmap, threshold)
177 for i, mh
in enumerate(mhs):
178 ensmb.add_component_and_fits(mh,
181 rgb = colors[mh.get_name()]
183 rgb = colors[names[i]]
186 for p in IMP.core.get_leaves(mh):
187 g= IMP.display.XYZRGeometry(p)
195 align.add_all_restraints()
197 print "Get number of restraints:", len(mdl.get_restraints())
198 rs = mdl.get_restraints()
199 for r
in mdl.get_restraints():
200 rr = IMP.kernel.RestraintSet.get_from(r)
201 for i
in range(rr.get_number_of_restraints()):
202 print rr.get_restraint(i).get_name()
203 output = open(scored_comb_output_fn,
"w")
207 for i
in range(asmb.get_number_of_component_headers()):
208 c = asmb.get_component_header(i)
209 fn = c.get_reference_fn()
214 rr = IMP.kernel.RestraintSet.get_from(r)
215 for i
in range(rr.get_number_of_restraints()):
216 output.write(rr.get_restraint(i).get_name() +
"|")
220 mdl.add_restraint(fitr)
221 print "Number of combinations:", len(combs[:max_comb])
226 rr = IMP.kernel.RestraintSet.get_from(r)
227 for j
in range(rr.get_number_of_restraints()):
228 print rr.get_restraint(j).get_name(), rr.evaluate(
False)
231 for i, comb
in enumerate(combs[:max_comb]):
232 print "Scoring combination:", comb
233 ensmb.load_combination(comb)
236 rr = IMP.kernel.RestraintSet.get_from(r)
237 for j
in range(rr.get_number_of_restraints()):
238 print rr.get_restraint(j).get_name()
239 rscore = rr.evaluate(
False)
241 num_violated = num_violated + 1
243 print str(all_leaves[0]) +
" :: " + str(all_leaves[-1])
244 score = mdl.evaluate(
False)
246 msg =
"COMB" + str(i) +
"|"
248 rr = IMP.kernel.RestraintSet.get_from(r)
249 for j
in range(rr.get_number_of_restraints()):
250 current_name = rr.get_restraint(j).get_name()
251 if current_name != prev_name:
252 msg +=
' ' + current_name +
' '
253 prev_name = current_name
254 rscore = rr.get_restraint(j).evaluate(
False)
255 msg += str(rscore) +
"|"
257 num_violated = num_violated + 1
261 num_violated) +
"||||" + str(
262 fitr.evaluate(
False)) +
"||:"
266 output.write(msg +
"\n")
268 ensmb.unload_combination(comb)
273 (options, args) = usage()
274 run(args[0], args[1], args[2], args[3], args[4], args[5], int(options.max))
276 if __name__ ==
"__main__":
An ensemble of fitting solutions.
void write_pdb(const Selection &mhd, base::TextOutput out, unsigned int model=1)
void set_log_level(LogLevel l)
Set the current global log level.
double get_resolution(kernel::Model *m, kernel::ParticleIndex pi)
double get_rmsd(const core::XYZs &s0, const core::XYZs &s1, const IMP::algebra::Transformation3D &tr_for_second)
SettingsData * read_settings(const char *filename)
GenericHierarchies get_leaves(Hierarchy mhd)
Get all the leaves of the bit of hierarchy.
ProteinsAnchorsSamplingSpace read_protein_anchors_mapping(multifit::ProteomicsData *prots, const std::string &anchors_prot_map_fn, int max_paths=INT_MAX)
Responsible for performing coarse fitting between two density objects.
Align proteomics graph to EM density map.
Class for sampling a density map from particles.
void transform(XYZ a, const algebra::Transformation3D &tr)
Apply a transformation to the particle.
See IMP.multifit for more information.
DensityMap * read_map(std::string filename)
ProteomicsData * read_proteomics_data(const char *proteomics_fn)
Proteomics reader.
IMP::kernel::OptionParser OptionParser
IntsList read_paths(const char *txt_filename, int max_paths=INT_MAX)
Read paths.
Calculate score based on fit to EM map.
FittingSolutionRecords read_fitting_solutions(const char *fitting_fn)
Fitting solutions reader.
void read_pdb(base::TextInput input, int model, Hierarchy h)