IMP  2.1.1
The Integrative Modeling Platform
IMP::test Namespace Reference

See IMP.test for more information.

Classes

class  ApplicationTestCase
 Super class for simple IMP application test cases. More...
 
class  DirectorObjectChecker
 Check to make sure the number of director references is as expected. More...
 
class  RefCountChecker
 Check to make sure the number of C++ object references is as expected. More...
 
class  RunInTempDir
 Simple RAII-style class to run in a temporary directory. More...
 
class  TestCase
 Super class for IMP test cases. More...
 

Functions

std::string get_data_path (std::string file_name)
 Return the full path to installed data. More...
 
std::string get_example_path (std::string file_name)
 Return the path to installed example data for this module. More...
 
def numerical_derivative
 Calculate the derivative of the single-value function func at point val. More...
 
def xyz_numerical_derivatives
 Calculate the x,y and z derivatives of model's scoring function on the xyz particle. More...
 

Standard module methods

All IMP modules have a set of standard methods to help get information about the module and about files associated with the module.

std::string get_module_version ()
 
std::string get_module_name ()
 

Function Documentation

std::string IMP::test::get_data_path ( std::string  file_name)

Each module has its own data directory, so be sure to use the version of this function in the correct module. To read the data file "data_library" that was placed in the data directory of module "mymodule", do something like

std::ifstream in(IMP::mymodule::get_data_path("data_library"));

This will ensure that the code works when IMP is installed or used via the setup_environment.sh script.

std::string IMP::test::get_example_path ( std::string  file_name)

Each module has its own example directory, so be sure to use the version of this function in the correct module. For example to read the file example_protein.pdb located in the examples directory of the IMP::atom module, do

model));

This will ensure that the code works when IMP is installed or used via the setup_environment.sh script.

def IMP.test.numerical_derivative (   func,
  val,
  step 
)

The derivative is calculated using simple finite differences starting with the given step; Richardson extrapolation is then used to extrapolate the derivative at step=0.

Definition at line 327 of file test/__init__.py.

def IMP.test.xyz_numerical_derivatives (   model,
  xyz,
  step 
)

The derivatives are approximated numerically using the numerical_derivatives() function.

Definition at line 363 of file test/__init__.py.

+ Here is the call graph for this function: