11 def optimize_subsets(subsets):
13 for subset
in subsets:
22 mdl = ps[0].get_model()
24 mdl.get_root_restraint_set(), ps)
29 def setup_scoring_function(ps):
31 pairs = [[0, 1], [0, 2], [1, 2], [2, 3], [3, 4], [4, 5], [3, 5]]
40 def initiate_configuration(domino_smp, ps):
50 domino_smp.set_particle_states(p, states)
56 mdl.set_log_level(IMP.base.SILENT)
65 setup_scoring_function(ps)
71 pst = optimize_subsets(subsets)
85 domino_smp.set_maximum_score(.2)
88 initiate_configuration(domino_smp, ps)
94 cs = domino_smp.get_sample()
98 print "Found ", cs.get_number_of_configurations(),
"solutions"
99 for i
in range(cs.get_number_of_configurations()):
100 cs.load_configuration(i)
102 print "solution number:", i,
" scored:", m.evaluate(
False)
InteractionGraph get_interaction_graph(ScoringFunctionAdaptor rs, const kernel::ParticlesTemp &pst)
SubsetGraph get_junction_tree(const InteractionGraph &ig)
Sample best solutions using Domino.
static XYZ setup_particle(kernel::Model *m, ParticleIndex pi)
Subsets get_subsets(const SubsetGraph &g)
Gets all of the Subsets of a SubsetGraph.
Distance restraint between two particles.
Class to handle individual model particles.
See IMP.core for more information.
See IMP.domino for more information.
Class for storing model, its restraints, constraints, and particles.
Harmonic function (symmetric about the mean)