
Using New Experimental
Data in IMP

VMD/IMP Workshop
Seth Axen and Barak Raveh

Challenge: for a typical complex biological system, no single
experimental or theoretical approach is generally accurate, precise,
complete or efficient at all scales of interest

Given the complex questions, need quantitative models of
that integrate multiple sources of data

1. Gather information

4. Analyze and validate  
parametrized models

selected

3. Sample favorable  
model instances

2. Formally represent
parametrized model and
external information at

appropriate scales

A general approach for integrative modeling:

Integrate information from
multiple source and scales to
maximize:
๏ accuracy - correctly

describes all relevant
aspects of the system

๏ precision - minimize the
variance among different
random solutions

๏ completeness - describe
the entire system at every
relevant spatial and
temporal scale

๏ efficiency - derive the
model rapidly and
inexpensively

Options for data integration
1. Representation  

Represent the system parts and their interactions
to reflect our prior knowledge

2. Scoring 
Score different models based on data fit

3. Sampling  
Use sampling procedures that pick data-
compatible models

4. Filtering  
Reject inconsistent models

5. Validation and Testing  
Contrast final models with data

Options for data integration
1. Representation  

Represent the system parts and their interactions
to reflect prior information

Example: coarse-grained model of the nucleocytoplasmic transport 
(Timney et al., JCB 2016)

NE

cytoplasm

nucleus

diffusing macromolecules of different sizes

NPC scaffold with multiple
layers of FG repeat domains

FG

 flexible spacer
regions

FG motifs

NPC scaffold FG repeat domains

side view top view

FGFG

nuclear
envelope

nuclear
envelope

The system parts Interactions

Options for data integration
2. Scoring 

Score different models based on their fit to the
data

Parameterize interactions  
to reflect specific measurements Data restraints

data representation

system representation

What is a Restraint?

• A restraint is any function that measures the
degree of consistency between a given model
and some expectation.

• Example: the hybrid energy function combines
weighted data-based with physics-based
restraints.

• We often have more data-based restraints
than physics-based restraints.

Ehybrid = Ephys + wdataEdata

Types of Restraints

• Traditional (physical, spatial)

• Probabilistic (Bayesian)

s(x,m, k) =
1

2
k(x�m)2

MacKerell et. al. J. Phys. Chem. B, 102:3586-3616, 1998.

S(M,D, I) = � ln [p(D | M, I)p(M | I)]

V =

X

bonds

kb (b� b
0

)

2

+

X

angles

k✓ (✓ � ✓
0

)

2

+

X

dihedrals

k� [1 + cos (n�� �)]

+

X

impropers

k! (! � !
0

)

2

+

X

Urey�Bradley

ku (u� u
0

)

2

+

X

nonbonded

✏

"✓
R

minij

rij

◆
12

�
✓
R

minij

rij

◆
6

#
+

qiqj
✏rij

Posterior Probability
“probability of a

model, assuming data
and prior information”

Likelihood
“Probability of observing the
data, assuming the model

and prior information”

Prior
“Probability of a

model, assuming only
prior information”

p(M | D, I) / p(D | M, I)p(M | I)
Forward Model

Error/Uncertainty Model

Advantages of Bayesian Restraints

• Handle uncertainty rigorously and infer it as a
function of data or coordinates.

• Model unknown nuisance parameters.
• Monte Carlo integration enables calculation of

posterior probability of any given model.
• Generate models that are maximally accurate

and optimally precise for the given data and
representation.

• Combine restraints from multiple data sources
immediately with no parameterization.

• Force implicit assumptions to be explicit.

Bayesian Restraints Make Implicit
Assumptions Explicit

• Harmonic Restraint

• Gaussian (Normal) Restraint

• Harmonic restraint is (basically) a normal restraint and
therefore assumes
• uncertainty is a known constant
• error is additive
• assume equal uncertainty for all harmonics and

independence of data points if multiple harmonics with
same k used

s(x, µ,�) = � ln


1p
2⇡�

e

�(x�µ)2/2�2

�
=

1

2�2
(x� µ)2 + ln(�) +

1

2
ln(2⇡)

s(x,m, k) =
1

2
k(x�m)2

Hypothetical Scenario

• A collaborator approaches us with NMR data
from ubiquitin.

• They’ve computed 364 Nuclear Overhauser
Effects (NOEs) and 98 J-couplings.

• They’ve used software to predict dihedral
angles from J-coupling data.

• They want to know what states of ubiquitin
are consistent with their data.

J(�) = C cos(2�) +B cos(�) +A

Data from Cornilescu, G et al. 1998. J Am Chem Soc. 120: 6836-7. PDB: 1D3Z

Nuclear Overhauser Effect (NOE)

• An effect seen when magnetic dipoles of two
nearby protons interact

• Irradiating one to resonance and then relaxing
causes state population of other to change,
resulting in change in intensity

• Assume isolated spin-pair approximation (ISPA)

• Magnitude of NOE alone is meaningless. Only
relative magnitude of NOE matters. Reference
distances often used to parameterize.

INOE(X1, X2, �) =
�

d(X1, X2)6
, � > 0

Bayesian Restraint for NOEs

• NOE error is likely multiplicative, not additive
• Absolute deviation of NOE is meaningless.
• We therefore use a log-normal distribution

• We a priori don’t know the scale of error or scale
(gamma) parameter
• Jeffreys Prior is like a uniform prior with maximal

ignorance of scale magnitude.

Rieping W, Habeck M, Nilges M. Science. 2005. 309(5732): 303-6.
Rieping W, Habeck M, Nilges M. J Am Chem Soc. 2005. 127(46): 16026-7.

p(Ii | X1, X2, �,�, I) =
1p
2⇡�

exp

⇢
� 1

2�2
ln

2
(Ii/�d

�6
i (X1, X2)

�

p(�) / 1

�
p(�) / 1

�

class JeffreysRestraint(IMP.Restraint):
 """Jeffreys prior on the sigma parameter of a normal distribution."""
 def __init__(self, m, s):
 IMP.Restraint.__init__(self, m, "JeffreysRestraint%1%")
 self.s = s

 def do_add_score_and_derivatives(self, sa):
 sig = IMP.isd.Scale(self.get_model(), self.s)
 score = math.log(sig.get_scale())
 if sa.get_derivative_accumulator():
 deriv = 1. / sig.get_scale()
 sig.add_to_scale_derivative(deriv, sa.get_derivative_accumulator())
 sa.add_score(score)

 def do_get_inputs(self):
 return [self.get_model().get_particle(self.s)]

Example IMP Restraint: Jeffreys Prior

p(�) / 1

�
@

@�
s(�) =

1

�

s(�) = � ln [p(�)] = ln (�) + c
0

Take an IMP.ScoreAccumulator

Compute score

Compute derivative of score wrt sigma

Add score to accumulator

Init with model and sigma (particle with IMP.isd.Scale)

Store particle

Get particles used in score calculation

Activity: Write an IMP Restraint for NOE

• Open imp_restraints.py
• Take model, two IMP.core.XYZR particles (atoms) and two
IMP.isd.Scale particles (sigma and gamma) as input.

class NOERestraint(IMP.Restraint):
 """Apply an NOE distance restraint between two particles."""
 def __init__(self, m, p0, p1, sigma, gamma, Iexp):
 IMP.Restraint.__init__(self, m, "NOERestraint%1%")
 pass

 def do_add_score_and_derivatives(self, sa):
 pass

 def do_get_inputs(self):
 pass

Store variables

Compute score and derivatives

Return all inputs

p(Ii | X1, X2, �,�, I) =
1p
2⇡�

exp

⇢
� 1

2�2
ln

2
(Ii/�d

�6
i (X1, X2)

�

NOE Restraint Formulas

• Score

• Derivatives (if you have time)

s(d,�, �, Ii) =
1

2�2
ln2

✓
Iid6

�

◆
+ ln(d�) +

1

2
ln(2⇡)

@

@d
s(d,�, �, Ii) =

6

d�2
ln

✓
Iid6

�

◆

@

@�
s(d,�, �, Ii) =

1

�
+

1

�3
ln2

✓
Iid6

�

◆

@

@�
s(d,�, �, Ii) = � 6

d��2

Tricky because
you need

to propagate to
points

How NOERestraint is Implemented in IMP

• https://integrativemodeling.org/2.6.2/doc/ref/
classIMP_1_1isd_1_1NOERestraint.html

• https://github.com/salilab/imp/blob/develop/
modules/isd/src/NOERestraint.cpp

https://integrativemodeling.org/2.6.2/doc/ref/classIMP_1_1isd_1_1NOERestraint.html
https://integrativemodeling.org/2.6.2/doc/ref/classIMP_1_1isd_1_1NOERestraint.html
https://github.com/salilab/imp/blob/develop/modules/isd/src/NOERestraint.cpp
https://github.com/salilab/imp/blob/develop/modules/isd/src/NOERestraint.cpp

PMI vs IMP

• IMP is comprised of low-level, general components:
Particles, geometries, restraints, optimizers, etc

• PMI is a collection of high-level wrappers:
• Refer to biological units rather than individual particles
• Many protocols (e.g. replica exchange) already

packaged up nicely for us
• Publication-ready plots are more or less automatic

PMI vs IMP Restraints

• Core IMP restraints act on explicitly defined
particles (bottom up)

• PMI restraints act on named biological
units (or the entire system, as in this case;
top down)

• PMI restraints are automatically multi-scale
(unlike core restraints)

• Most PMI restraints simply ‘wrap’ one or
more underlying core IMP restraints

Example: Wrapping Our Restraints in
PMI

• Open pmi_restraints.py

Coming Soon

• All restraints in IMP.pmi will soon share a
common base class with add-ons.

• Most of the functionality needed to make a
restraint PMI compatible will be automatically
provided.

• Usually only __init__ will need to be
defined.

Running the Simulation

• Time to run the script. 
$ python run.py

• Because this uses replica exchange, for the
full effect, run with an MPI-enabled IMP on a
cluster. 
$ mpirun -np 8 python run.py

• When finished, run 
$ python cluster.py  
$ python plot_progress output/
stat.0.out

Scores Plateau Over Time

The Posterior Distribution of the
Nuisance Parameters

Top Scoring Cluster Representatives

with all restraints
compared to original paper

Data from Cornilescu, G et al. 1998. J Am Chem Soc. 120: 6836-7. PDB: 1D3Z

with no data restraints

Options for data integration
3. Sampling  

Use sampling procedures that pick data-
compatible models

Example: fragment libraries for efficient backbone sampling in Rosetta

sequence

secondary structure  
prediction

NMR chemical shifts

Options for data integration
4. Filtering  

Reject inconsistent models

Useful for emergent properties, for which data restraints are less suitable
- when the whole is greater than the sum of its parts

Examples:
- radius of gyration
- # buried hydrogen bonds
- life

Integrating data about the radius-of-gyration (Rg)
of disordered FG repeats  

(representation, scoring, filtering)

NE

cytoplasm

nucleus

diffusing macromolecules of different sizes

NPC scaffold with multiple
layers of FG repeat domains

FG

 flexible spacer
regions

FG motifs

NPC scaffold FG repeat domains

side view top view

FGFG

nuclear
envelope

nuclear
envelope

Multiple sources indicate that FG repeats are
highly disordered; wide distribution of Rg values

Full atom MD simulations (Raveh, Karp, Sparks et al, 2016;
Mercadante et al. 2015)NMR  

(Hough et al., 2015;
Milles et al., 2015;
Raveh, Karp, Sparks  
et al., 2016)

SAXS and SANS  
(Mercadante et al., 2015;
Sparks et al., unpublished data)

Atomic force microscopy (AFM) 
(Sakiyama et al., 2016)

smFRET 
(Mercadante et al., 2015)

Objective: a coarse-grained model of FG repeats
that reproduces observed <Rg2>

I. Representation:
• Bead = ~20 amino acids  

(data: one repeat = ~20 amino acids)
• Springs with unknown spring parameter 

(data: polymer behaves as entropic-spring)

Objective: a coarse-grained model of FG repeats
that reproduces observed <Rg2>

II. Scoring:
• Use data and polymer physics theory for

initial guess if:
• Spring resting length (bond length)
• Spring force coefficient (in kcal/mol/A2)

III. Filtering:
• Simulate model with different parameters
• Characterize subset of model parameters

that reproduce observed <Rg2>

Objective: a coarse-grained model of FG repeats
that reproduces observed <Rg2>

Hands on:

• Represent FG repeats in IMP
• Simulate with different model parameters
• Filter out models that are inconsistent with the

data

Hands on: 
Simulate Rg with different parameters
• python simulate_radius_of_gyration
<k> <rest_length_factor>
• try with k=0.01 vs. 10.0 kcal/mol/A2
• try with rest_length_factor=1.0 vs. 1.5 vs. 2.0

• What’s the effect on mean Rg? Fluctuations?

Hands on: 
Creating the custom scoring function

Summary: options for data integration
1. Representation  

Represent the system parts and their interactions
to reflect our prior knowledge

2. Scoring 
Score different models based on data fit

3. Sampling  
Use sampling procedures that pick data-
compatible models

4. Filtering  
Reject inconsistent models

5. Validation and Testing  
Contrast final models with data

Before Writing New IMP Code

• What exactly do you need?
• New function, restraint, class(es)?

• Check IMP for existing code
• Many abstractions, such as PairScore and
UnaryFunction can be passed to existing
restraints.

• Can existing code be enhanced to provide
the necessary functionality?

• Does the restraint belong in a general module
(e.g. IMP.core) or does it need its own
module?

Creating a Module for a New
Experimental Restraint

• First, clone the IMP git repo and enter it.
• From the imp directory, run: 
$ python tools/make-module.py
module_name

• Enter new module.
• Update dependencies.py to contain

necessary dependencies.
• Update README.md.

IMP Module Directory Structure

Examples for using the module code

Python code and C++/Python interfaces (SWIG)
C++ source files

C++ header files

Tests for Python and C++ code

Stand-alone programs

IMP module/library dependencies

Tests, Documentation, and Examples

• Rigorous testing ensures code functions correctly
• Use IMP.test.TestCase, based on Python’s

unittest.TestCase.
• Test all methods, initializations, use cases, including edge

scenarios.
• Test setup of larger systems/simulations (“medium” and

“expensive” tests).
• Documentation enables others to use your code.

• Thoroughly document class inputs (Doxygen format) and any
unclear steps.

• Write interesting examples showing others how to use your code.
• See https://integrativemodeling.org/doc.html and https://
github.com/salilab/imp for examples

https://integrativemodeling.org/doc.html
https://github.com/salilab/imp
https://github.com/salilab/imp

