
IMP Software Introduction  
& Tutorial

 
 Benjamin Webb, Sali Lab

(ben@salilab.org)

mailto:ben@salilab.org

Integrative Modeling Platform (IMP)
https://integrativemodeling.org/

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman, F. Alber, B. Peterson, A. Sali, PLoS Biol, 2012.
R. Pellarin, M. Bonomi, B. Raveh, S. Calhoun, C. Greenberg, G.Dong, S.J. Kim, D. Saltzberg, I. Chemmama, S. Axen, 
S. Viswanath.

Diverse problems, so no one
‘black box’
“Mix and match” components
for developing an integrative
modeling protocol
Open source (LGPL)
Hosted on

Representation:
Atomic
Rigid bodies
Coarse-grained
Multi-scale
Symmetry / periodicity
Multi-state systems
Time-ordered systems

Scoring:
Density maps
EM images
Proteomics
FRET
Chemical and Cys cross-linking
Homology-derived restraints
SAXS
Native mass spectrometry
Statistical potentials
Molecular mechanics forcefields
Bayesian scoring
Library of functional forms
(ambiguity, ...)

Analysis:
Clustering
Chimera
PyMOL
PDB files
Density maps

Sampling:
Simplex
Conjugate Gradients
Monte Carlo
Brownian Dynamics
Molecular Dynamics
Replica Exchange
Divide-and-conquer
 enumeration

https://integrativemodeling.org/

IMP is divided into modules

IMP kernel

IMP is divided into modules

IMP kernelIMP.algebra

IMP is divided into modules

IMP kernelIMP.algebra
IMP.saxs

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

Common functionality

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

Common functionalityGeometry, primitive shapes

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

Common functionalityGeometry, primitive shapes
Handling of Small Angle
X-ray (SAXS) data

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

Common functionalityGeometry, primitive shapes

Handling of electron microscopy
(EM) experimental data

Handling of Small Angle
X-ray (SAXS) data

IMP is divided into modules

IMP kernelIMP.algebra

IMP.em

IMP.saxs

Related functionality
Can be developed
separately
Can be licensed
differently
Stable interfaces

Common functionalityGeometry, primitive shapes

Handling of electron microscopy
(EM) experimental data

Handling of Small Angle
X-ray (SAXS) data

Model
Distance

Angle

Plane

Cross correlation

Gaussian Mixture Model

Profile

IMP is divided into modules

Sample is in solution
Pro: easier to produce, closer to its in vivo state
Con: rotationally averaged

sample in
solution X-ray detector scattering curve

SAXS

EM

Significant processing required to generate a 3D map

IMP software implementation

IMP software implementation

Each ‘piece’ is a Python class

IMP software implementation

Each ‘piece’ is a Python class Distance

Angle

Plane

IMP software implementation

Each ‘piece’ is a Python class
Most classes actually ‘wrap’ 
an underlying class in C++

Distance

Angle

Plane

IMP software implementation

Each ‘piece’ is a Python class
Most classes actually ‘wrap’ 
an underlying class in C++

C++ for speed; Python for flexibility, interfacing

Distance

Angle

Plane

IMP software implementation

Each ‘piece’ is a Python class
Most classes actually ‘wrap’ 
an underlying class in C++

C++ for speed; Python for flexibility, interfacing
Each module is a Python module, and C++
namespace

Distance

Angle

Plane

IMP software implementation

Each ‘piece’ is a Python class
Most classes actually ‘wrap’ 
an underlying class in C++

C++ for speed; Python for flexibility, interfacing
Each module is a Python module, and C++
namespace
IMP is usually used from Python, by writing a
script (but certainly can use from C++)

Distance

Angle

Plane

IMP software implementation

Each ‘piece’ is a Python class
Most classes actually ‘wrap’ 
an underlying class in C++

C++ for speed; Python for flexibility, interfacing
Each module is a Python module, and C++
namespace
IMP is usually used from Python, by writing a
script (but certainly can use from C++)
A protocol is thus one or more Python scripts plus
the input data

Distance

Angle

Plane

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

MODELLER

comparative modeling

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

BioPython

handling of

sequence data

MODELLER

comparative modeling

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

Chimera/VMD

visualization

BioPython

handling of

sequence data

MODELLER

comparative modeling

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

scikit-learn

clustering, machine

learning

Chimera/VMD

visualization

BioPython

handling of

sequence data

MODELLER

comparative modeling

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

scikit-learn

clustering, machine

learning

Chimera/VMD

visualization

BioPython

handling of

sequence data

MODELLER

comparative modeling

numpy/scipy

 matrix/linear algebra

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

scikit-learn

clustering, machine

learning
etc.

Chimera/VMD

visualization

BioPython

handling of

sequence data

MODELLER

comparative modeling

numpy/scipy

 matrix/linear algebra

Link via Python to other packages
Connect IMP components to other packages via
standard Python interfaces

Avoid code duplication

Documentation

Can be found at 
https://integrativemodeling.org/doc.html

Split into a manual (designed to be read sequentially,
contains tutorials similar to this one) and a reference
guide (random access, documenting the IMP classes
and modules)

https://integrativemodeling.org/doc.html

Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
Create two "untyped" Particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

"Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Optimize the x,y,z coordinates of both particles with conjugate
gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

Imports

import IMP
import IMP.algebra
import IMP.core

Imports

Make IMP classes in the IMP kernel (‘IMP’) and
IMP.algebra and IMP.core modules available 
 
 

import IMP
import IMP.algebra
import IMP.core

https://integrativemodeling.org/2.6.2/doc/ref/namespaces.html

Imports

Make IMP classes in the IMP kernel (‘IMP’) and
IMP.algebra and IMP.core modules available 
 
 

See the IMP Reference Guide ‘Modules’ tab for a
comprehensive list of all modules: 
https://integrativemodeling.org/2.6.2/doc/ref/namespaces.html

import IMP
import IMP.algebra
import IMP.core

https://integrativemodeling.org/2.6.2/doc/ref/namespaces.html

Model and particles
m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

xyz coordinates

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

xyz coordinates
mass

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

xyz coordinates
mass
radius

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

xyz coordinates
mass
radius
pointers to other particles, to represent a bond (two other particles), or
hierarchy (parents, children)

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Model and particles

Create a new Model object (an instance of the Model class) and assign it
to the variable ‘m’

An IMP Model is a container that holds knowledge of the entire system
(see the IMP Reference Guide)

Create two particles called ‘p1’ and ‘p2’; each is an abstract data
container inside the model (really p1 and p2 are just indices into a data
structure inside Model) and can hold any number of attribute:value pairs,
e.g.

xyz coordinates
mass
radius
pointers to other particles, to represent a bond (two other particles), or
hierarchy (parents, children)
element, residue/atom name, etc.

m = IMP.Model()
Create two "untyped" particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

Decorators
"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Decorators

A decorator lets us use a specific set of functionality on a particle

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Decorators

A decorator lets us use a specific set of functionality on a particle
‘d1’ refers to the same underlying object as ‘p1’ but acts like a 3D
point (IMP.core.XYZ class)

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Decorators

A decorator lets us use a specific set of functionality on a particle
‘d1’ refers to the same underlying object as ‘p1’ but acts like a 3D
point (IMP.core.XYZ class)

set_coordinates() is a method of the XYZ class

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Decorators

A decorator lets us use a specific set of functionality on a particle
‘d1’ refers to the same underlying object as ‘p1’ but acts like a 3D
point (IMP.core.XYZ class)

set_coordinates() is a method of the XYZ class
IMP.algebra.Vector3D represents a 3D vector or coordinate

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Decorators

A decorator lets us use a specific set of functionality on a particle
‘d1’ refers to the same underlying object as ‘p1’ but acts like a 3D
point (IMP.core.XYZ class)

set_coordinates() is a method of the XYZ class
IMP.algebra.Vector3D represents a 3D vector or coordinate

A single particle can be decorated multiple times (e.g. can be a
3D point and also have mass, be part of a bond, and have a
parent, such as a residue)

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Single-particle restraints
Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles
IMP.core.SingletonRestraint applies a SingletonScore to
a single particle (p1 in this case)

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles
IMP.core.SingletonRestraint applies a SingletonScore to
a single particle (p1 in this case)
In turn, DistanceToSingletonScore calculates the Cartesian
distance between a fixed point and p1, then uses a UnaryFunction
to weight that distance

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles
IMP.core.SingletonRestraint applies a SingletonScore to
a single particle (p1 in this case)
In turn, DistanceToSingletonScore calculates the Cartesian
distance between a fixed point and p1, then uses a UnaryFunction
to weight that distance
Harmonic is a unary function that applies 
a simple harmonic spring

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles
IMP.core.SingletonRestraint applies a SingletonScore to
a single particle (p1 in this case)
In turn, DistanceToSingletonScore calculates the Cartesian
distance between a fixed point and p1, then uses a UnaryFunction
to weight that distance
Harmonic is a unary function that applies 
a simple harmonic spring

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

p1-origin distance

R
es

tra
in

t v
al

ue

Single-particle restraints

A Restraint is a term in our scoring function, just a function of one
or more particles
IMP.core.SingletonRestraint applies a SingletonScore to
a single particle (p1 in this case)
In turn, DistanceToSingletonScore calculates the Cartesian
distance between a fixed point and p1, then uses a UnaryFunction
to weight that distance
Harmonic is a unary function that applies 
a simple harmonic spring
In this way, we can very flexibly build our 
scoring function from basic building blocks

Harmonically restrain p1 to be zero distance
from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f,
 IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

p1-origin distance

R
es

tra
in

t v
al

ue

Two-particle restraints

Similarly, we make another Restraint called ‘r2’ that
restrains the distance between two particles
Usually distances are considered to be angstroms but this isn’t
required or enforced 

Note that the core module provides simple ‘building block’
restraints
More complex restraints to handle specific types of input data
are found in other modules (e.g. the em and saxs modules
provide restraints to handle EM and SAXS data respectively)

Harmonically restrain p1 and p2 to be distance
5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Other restraints

Other restraints can be set up by combining building blocks:

Harmonically restrain p1 and p2 to be distance
5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Other restraints

Other restraints can be set up by combining building blocks:

Harmonically restrain p1 and p2 to be distance
5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Force field (bond terms)

Given two XYZ and Bonded particles
p1 and p2,
Look up the Bond particle that relates
them
Extract mean and stiffness
parameters
Enforce a simple harmonic between
p1 and p2

Other restraints

Other restraints can be set up by combining building blocks:

Harmonically restrain p1 and p2 to be distance
5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Force field (bond terms)

Given two XYZ and Bonded particles
p1 and p2,
Look up the Bond particle that relates
them
Extract mean and stiffness
parameters
Enforce a simple harmonic between
p1 and p2

Statistical potential

Given two XYZ and Atom particles p1
and p2,
Look up the atom type of each particle
(e.g. CA, CB)
Look up histogram as a function of the
two types
Enforce a cubic spline between p1
and p2 (-log of the histogram)

Sampling

Finally, we make a simple scoring function ‘sf’ that’s just
the sum of the two harmonic restraints
We find the minimum of the function using up to 50 steps
of conjugate gradients

At each step the algorithm will try to reduce the value of the
scoring function by changing the coordinates of d1 and/or d2

Optimize the x,y,z coordinates of both particles
with conjugate gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2],
 "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

Overall workflow

Overall workflow

IMP.Model, m

Overall workflow

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Overall workflow

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Scores interaction between p1 and p2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Scores interaction between p1 and p2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.core.RestraintsScoringFunction, sf

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Scores interaction between p1 and p2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.core.RestraintsScoringFunction, sf

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Scores interaction between p1 and p2

Combines r1 and r2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.core.RestraintsScoringFunction, sf

IMP.core.ConjugateGradients, o

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Scores position of p1

Scores interaction between p1 and p2

Combines r1 and r2

Overall workflow

IMP.core.SingletonRestraint, r1

IMP.core.PairRestraint, r2

IMP.core.RestraintsScoringFunction, sf

IMP.core.ConjugateGradients, o

IMP.Model, m

Particle, p1
IMP.core.XYZ, d1

Particle p2,
IMP.core.XYZ, d2

Moves p1 and p2 to minimize sf

Scores position of p1

Scores interaction between p1 and p2

Combines r1 and r2

Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
Create two "untyped" Particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

"Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Optimize the x,y,z coordinates of both particles with conjugate
gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

Example Python script
import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
Create two "untyped" Particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

"Decorate" the Particles with x,y,z attributes (point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(-10.0, -10.0, -10.0))
print(d1, d2)

Harmonically restrain p1 to be zero distance from the origin
f = IMP.core.Harmonic(0.0, 1.0)
s = IMP.core.DistanceToSingletonScore(f, IMP.algebra.Vector3D(0., 0., 0.))
r1 = IMP.core.SingletonRestraint(m, s, p1)

Harmonically restrain p1 and p2 to be distance 5.0 apart
f = IMP.core.Harmonic(5.0, 1.0)
s = IMP.core.DistancePairScore(f)
r2 = IMP.core.PairRestraint(m, s, (p1, p2))

Optimize the x,y,z coordinates of both particles with conjugate
gradients
sf = IMP.core.RestraintsScoringFunction([r1, r2], "scoring function")
d1.set_coordinates_are_optimized(True)
d2.set_coordinates_are_optimized(True)
o = IMP.core.ConjugateGradients(m)
o.set_scoring_function(sf)
o.optimize(50)
print(d1, d2)

So let’s run it…

IMP installation

IMP installation
Easiest cross-platform (Windows, Mac, Linux) way is to
install Anaconda Python (either Miniconda or the full
Anaconda, 2 or 3), then run from a command prompt/
terminal: 
 
$ conda config --add channels salilab  
$ conda install imp

IMP installation
Easiest cross-platform (Windows, Mac, Linux) way is to
install Anaconda Python (either Miniconda or the full
Anaconda, 2 or 3), then run from a command prompt/
terminal: 
 
$ conda config --add channels salilab  
$ conda install imp

The dollar sign ($) here represents your command
prompt (e.g. from Terminal on a Mac, Command
Prompt on a Windows machine, or a Linux command
line). Everything following the $ should be typed at
the command prompt.

IMP installation
Easiest cross-platform (Windows, Mac, Linux) way is to
install Anaconda Python (either Miniconda or the full
Anaconda, 2 or 3), then run from a command prompt/
terminal: 
 
$ conda config --add channels salilab  
$ conda install imp

Can also install IMP from source code, native package
(.exe, .dmg, .rpm, .deb), or Homebrew (Mac) but you still
need to figure out how to get other Python packages (e.g.
via pip)

The dollar sign ($) here represents your command
prompt (e.g. from Terminal on a Mac, Command
Prompt on a Windows machine, or a Linux command
line). Everything following the $ should be typed at
the command prompt.

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$  

IMP installation

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$  

>>> is the Python prompt. Everything following
the >>> should be typed into a Python interpreter
(not the command prompt)

IMP installation

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$  

These are double-underscores. Variables starting
and ending with double-underscores have
special meaning in Python (this one is the
version of the module)

IMP installation

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$  

IMP installation

Parentheses () usually denote a function call.
This function should print nothing if all is OK.

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$   The exit() function leaves the Python interpreter

and drops us back at the command prompt

IMP installation

Test that it installed correctly: 
 

$ python  
Python 3.5.2 |Anaconda custom (64-
bit)| (default, Jul 2 2016, 17:53:06)  
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
on linux  
Type "help", "copyright", "credits" or
"license" for more information.  
>>> import IMP  
>>> IMP.__version__  
'2.6.2'  
>>> x = IMP.get_example_path('.')  
>>> exit()  
$  

IMP installation

Windows errors

If on Windows you see an error ending in “IMP is not
installed or set up correctly.” and the path it
mentions contains lots of “placehold_placehold”
then you may have run into a Windows Anaconda bug.
Workaround: 
$ conda uninstall imp  
$ conda install conda=4.2.9  
$ conda install imp conda=4.2.9

Running the script

Running the script

First, determine where it is (it is included with
IMP, as an example for the ‘core’ module): 
$ python  
>>> import IMP.core  
>>> IMP.core.get_example_path('simple.py')

Running the script

First, determine where it is (it is included with
IMP, as an example for the ‘core’ module): 
$ python  
>>> import IMP.core  
>>> IMP.core.get_example_path('simple.py')

Should just print a full path to ‘simple.py’; if not, raise a hand

Running the script

First, determine where it is (it is included with
IMP, as an example for the ‘core’ module): 
$ python  
>>> import IMP.core  
>>> IMP.core.get_example_path('simple.py')

Then, copy it to your working directory/folder: 
$ mkdir simple_script  
$ cd simple_script  
$ cp <path_to_simple.py> .

Should just print a full path to ‘simple.py’; if not, raise a hand

Running the script

First, determine where it is (it is included with
IMP, as an example for the ‘core’ module): 
$ python  
>>> import IMP.core  
>>> IMP.core.get_example_path('simple.py')

Then, copy it to your working directory/folder: 
$ mkdir simple_script  
$ cd simple_script  
$ cp <path_to_simple.py> .

Windows users, use ‘copy’ rather than ‘cp’
and \ rather than \\ or / in filenames/paths.

Should just print a full path to ‘simple.py’; if not, raise a hand

Running the script

First, determine where it is (it is included with
IMP, as an example for the ‘core’ module): 
$ python  
>>> import IMP.core  
>>> IMP.core.get_example_path('simple.py')

Then, copy it to your working directory/folder: 
$ mkdir simple_script  
$ cd simple_script  
$ cp <path_to_simple.py> .

Finally, run it: 
$ python simple.py

Windows users, use ‘copy’ rather than ‘cp’
and \ rather than \\ or / in filenames/paths.

Should just print a full path to ‘simple.py’; if not, raise a hand

Python vs. C++

#include <IMP.h>
#include <IMP/algebra.h>
#include <IMP/core.h>

int main() {
 IMP_NEW(IMP::Model, m, ());
 // Create two "untyped" particles
 IMP::ParticleIndex p1 = m->add_particle("p1");
 IMP::ParticleIndex p2 = m->add_particle("p2");

 // "Decorate" the particles with x,y,z attributes
 // (point-like particles)
 IMP::core::XYZ d1 = IMP::core::XYZ::setup_particle(m, p1);
 IMP::core::XYZ d2 = IMP::core::XYZ::setup_particle(m, p2);

 // Use some XYZ-specific functionality (set
 // coordinates)
 d1.set_coordinates(IMP::algebra::Vector3D(
 10.0, 10.0, 10.0));
 d2.set_coordinates(IMP::algebra::Vector3D(
 -10.0, -10.0, -10.0));
 std::cout << d1 << " " << d2 << std::endl;
}

import IMP
import IMP.algebra
import IMP.core

m = IMP.Model()
Create two "untyped" Particles
p1 = m.add_particle('p1')
p2 = m.add_particle('p2')

"Decorate" the Particles with x,y,z attributes
(point-like particles)
d1 = IMP.core.XYZ.setup_particle(m, p1)
d2 = IMP.core.XYZ.setup_particle(m, p2)

Use some XYZ-specific functionality (set
coordinates)
d1.set_coordinates(IMP.algebra.Vector3D(
 10.0, 10.0, 10.0))
d2.set_coordinates(IMP.algebra.Vector3D(
 -10.0, -10.0, -10.0))
print(d1, d2)

Note that usage from C++ is very similar (main
differences are in language syntax, typing, and memory
management)

IMP C++/Python
library

PMI

Higher level interfaces

In practice, scripts for real modeling problems would
be too long and unwieldy to write this way
Most usage of IMP is via simpler (but less flexible or
expressive) interfaces

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/
web services

Domain-specific applications

Chimera tools/
web services

Several plugins to UCSF Chimera that use IMP 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

FoXS: fast SAXS profile computation with Debye formula

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

FoXS: fast SAXS profile computation with Debye formula
FoXSDock: macromolecular docking with SAXS Profile

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

FoXS: fast SAXS profile computation with Debye formula
FoXSDock: macromolecular docking with SAXS Profile
SAXSMerge: automated statistical method to merge SAXS
profiles from different concentrations and exposure times 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

FoXS: fast SAXS profile computation with Debye formula
FoXSDock: macromolecular docking with SAXS Profile
SAXSMerge: automated statistical method to merge SAXS
profiles from different concentrations and exposure times 

Chimera tools/
web services

https://salilab.org/

Several plugins to UCSF Chimera that use IMP 

Web services at https://salilab.org/ including: 

AllosMod: modeling of ligand-induced protein dynamics,
allostery 

FoXS: fast SAXS profile computation with Debye formula
FoXSDock: macromolecular docking with SAXS Profile
SAXSMerge: automated statistical method to merge SAXS
profiles from different concentrations and exposure times 

Pose&Rank: scoring of protein-ligand complexes

Chimera tools/
web services

https://salilab.org/

IMP C++/Python
library

PMI

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/
web services

Domain-specific applications

Domain-specific applications

Command line tools

Domain-specific applications

Command line tools
Do a very specific task, a subset of IMP functionality

Domain-specific applications

Command line tools
Do a very specific task, a subset of IMP functionality
Generally, similar functionality to web services, but

Domain-specific applications

Command line tools
Do a very specific task, a subset of IMP functionality
Generally, similar functionality to web services, but

running locally

Domain-specific applications

Command line tools
Do a very specific task, a subset of IMP functionality
Generally, similar functionality to web services, but

running locally
more adjustable parameters, flexibility

Domain-specific applications

Command line tools
Do a very specific task, a subset of IMP functionality
Generally, similar functionality to web services, but

running locally
more adjustable parameters, flexibility

Today, we’ll look briefly at using the foxs command line
tool to leverage SAXS data

Domain-specific applications

FoXS

FoXS
Given an experimental SAXS profile and a 3D model,
FoXS:

3D model

sample in
solution X-ray detector scattering curve

Experiment

FoXS
Given an experimental SAXS profile and a 3D model,
FoXS:

Calculates the theoretical profile of the model

3D model

sample in
solution X-ray detector scattering curve

Experiment

FoXS
Given an experimental SAXS profile and a 3D model,
FoXS:

Calculates the theoretical profile of the model

3D model scattering curve

sample in
solution X-ray detector scattering curve

Experiment

FoXS
Given an experimental SAXS profile and a 3D model,
FoXS:

Calculates the theoretical profile of the model
Fits the two profiles together and reports a fit value, χ

3D model scattering curve

sample in
solution X-ray detector scattering curve

Experiment

FoXS
Given an experimental SAXS profile and a 3D model,
FoXS:

Calculates the theoretical profile of the model
Fits the two profiles together and reports a fit value, χ

3D model scattering curve

sample in
solution X-ray detector scattering curve

Experiment

FoXS usage

FoXS usage
Here we’ll use FoXS to improve the
structure of the C terminal domain of
Nup133, one of the subunits of the
Nup84 complex

modeling the Nup145c–Sec13 dimer on its own (C! dRMSD
of 6.5 Å; Figs. 5B and 5C). This observation underscores the
synergy between orthogonal data, thus demonstrating the
premise of integrative modeling.

Finally, the proximities of any two residues within each of
the two dominant solution clusters were measured by their
relative “contact frequency,” which is defined by how often
the two residues contact each other in the cluster (7). The
contact frequencies were in remarkable agreement with the
cross-link dataset (supplemental Fig. S4).

DISCUSSION

Integrative Structural Characterization of the Endogenous
Nup84 Complex Based on CX-MS Data—We present here an
optimized CX-MS workflow for integrative structural charac-
terization of native protein complexes. Importantly, this pipe-
line generates structures of complexes with near-atomic res-
olution and in a fraction of the time that, in our experience,

FIG. 6. The Nup84 complex molecular architecture revealed by the CX-MS integrative pipeline. The localization density maps of the
Nup84 subunits (solid contour surfaces) and the entire complex (transparent surfaces) were computed and contoured at the threshold of 2.5
times their volumes estimated from sequence (supplemental Table S6) (A through C). A, front and back views of the localization density maps
of the Nup84 subunits and the entire complex. B, a representative single Nup84 complex structure (colored ribbon) is shown along with the
localization density maps of the individual subunits. C, the localization density maps of the two dominant clusters computed on the hub region
(Nup120-CTD, Nup85, Nup145c, Sec13, and Seh1) are shown, along with the representative single structures of the hub region for each of the
two clusters, from multiple viewing points. D, the positions of Sec13 and Seh1 are presented for each of the two clusters. E, the representative
model projections in each of the two clusters are shown, along with the EM class average (14).

TABLE I
Accuracy of determining the crystallographic interfaces

Cluster
index

Accuracy of crystallographic interface (Å)

Nup145c–Sec13 Nup85–Seh1 Nup84–Nup145c

1 4.0 (min 2.4) 12.4 (min 6.5) 7.5 (min 2.0)
2 4.0 (min 2.7) 12.4 (min 4.4) 6.2 (min 2.2)

The accuracy of modeling each crystallographic interface was cal-
culated as the average C! dRMSD between the models in the cluster
and the corresponding crystallographic interface. The minimum (min)
value of C! dRMSD in the cluster is indicated in parentheses.

Integrative Modeling of Yeast Nup84 Complex by Cross-linking

Molecular & Cellular Proteomics 13.11 2937

FoXS usage
Here we’ll use FoXS to improve the
structure of the C terminal domain of
Nup133, one of the subunits of the
Nup84 complex

modeling the Nup145c–Sec13 dimer on its own (C! dRMSD
of 6.5 Å; Figs. 5B and 5C). This observation underscores the
synergy between orthogonal data, thus demonstrating the
premise of integrative modeling.

Finally, the proximities of any two residues within each of
the two dominant solution clusters were measured by their
relative “contact frequency,” which is defined by how often
the two residues contact each other in the cluster (7). The
contact frequencies were in remarkable agreement with the
cross-link dataset (supplemental Fig. S4).

DISCUSSION

Integrative Structural Characterization of the Endogenous
Nup84 Complex Based on CX-MS Data—We present here an
optimized CX-MS workflow for integrative structural charac-
terization of native protein complexes. Importantly, this pipe-
line generates structures of complexes with near-atomic res-
olution and in a fraction of the time that, in our experience,

FIG. 6. The Nup84 complex molecular architecture revealed by the CX-MS integrative pipeline. The localization density maps of the
Nup84 subunits (solid contour surfaces) and the entire complex (transparent surfaces) were computed and contoured at the threshold of 2.5
times their volumes estimated from sequence (supplemental Table S6) (A through C). A, front and back views of the localization density maps
of the Nup84 subunits and the entire complex. B, a representative single Nup84 complex structure (colored ribbon) is shown along with the
localization density maps of the individual subunits. C, the localization density maps of the two dominant clusters computed on the hub region
(Nup120-CTD, Nup85, Nup145c, Sec13, and Seh1) are shown, along with the representative single structures of the hub region for each of the
two clusters, from multiple viewing points. D, the positions of Sec13 and Seh1 are presented for each of the two clusters. E, the representative
model projections in each of the two clusters are shown, along with the EM class average (14).

TABLE I
Accuracy of determining the crystallographic interfaces

Cluster
index

Accuracy of crystallographic interface (Å)

Nup145c–Sec13 Nup85–Seh1 Nup84–Nup145c

1 4.0 (min 2.4) 12.4 (min 6.5) 7.5 (min 2.0)
2 4.0 (min 2.7) 12.4 (min 4.4) 6.2 (min 2.2)

The accuracy of modeling each crystallographic interface was cal-
culated as the average C! dRMSD between the models in the cluster
and the corresponding crystallographic interface. The minimum (min)
value of C! dRMSD in the cluster is indicated in parentheses.

Integrative Modeling of Yeast Nup84 Complex by Cross-linking

Molecular & Cellular Proteomics 13.11 2937

FoXS usage
Here we’ll use FoXS to improve the
structure of the C terminal domain of
Nup133, one of the subunits of the
Nup84 complex
SAXS is rotationally averaged so 
we can’t predict an X-ray-like
structure, but we can check
consistency with an existing structure

modeling the Nup145c–Sec13 dimer on its own (C! dRMSD
of 6.5 Å; Figs. 5B and 5C). This observation underscores the
synergy between orthogonal data, thus demonstrating the
premise of integrative modeling.

Finally, the proximities of any two residues within each of
the two dominant solution clusters were measured by their
relative “contact frequency,” which is defined by how often
the two residues contact each other in the cluster (7). The
contact frequencies were in remarkable agreement with the
cross-link dataset (supplemental Fig. S4).

DISCUSSION

Integrative Structural Characterization of the Endogenous
Nup84 Complex Based on CX-MS Data—We present here an
optimized CX-MS workflow for integrative structural charac-
terization of native protein complexes. Importantly, this pipe-
line generates structures of complexes with near-atomic res-
olution and in a fraction of the time that, in our experience,

FIG. 6. The Nup84 complex molecular architecture revealed by the CX-MS integrative pipeline. The localization density maps of the
Nup84 subunits (solid contour surfaces) and the entire complex (transparent surfaces) were computed and contoured at the threshold of 2.5
times their volumes estimated from sequence (supplemental Table S6) (A through C). A, front and back views of the localization density maps
of the Nup84 subunits and the entire complex. B, a representative single Nup84 complex structure (colored ribbon) is shown along with the
localization density maps of the individual subunits. C, the localization density maps of the two dominant clusters computed on the hub region
(Nup120-CTD, Nup85, Nup145c, Sec13, and Seh1) are shown, along with the representative single structures of the hub region for each of the
two clusters, from multiple viewing points. D, the positions of Sec13 and Seh1 are presented for each of the two clusters. E, the representative
model projections in each of the two clusters are shown, along with the EM class average (14).

TABLE I
Accuracy of determining the crystallographic interfaces

Cluster
index

Accuracy of crystallographic interface (Å)

Nup145c–Sec13 Nup85–Seh1 Nup84–Nup145c

1 4.0 (min 2.4) 12.4 (min 6.5) 7.5 (min 2.0)
2 4.0 (min 2.7) 12.4 (min 4.4) 6.2 (min 2.2)

The accuracy of modeling each crystallographic interface was cal-
culated as the average C! dRMSD between the models in the cluster
and the corresponding crystallographic interface. The minimum (min)
value of C! dRMSD in the cluster is indicated in parentheses.

Integrative Modeling of Yeast Nup84 Complex by Cross-linking

Molecular & Cellular Proteomics 13.11 2937

FoXS usage
Here we’ll use FoXS to improve the
structure of the C terminal domain of
Nup133, one of the subunits of the
Nup84 complex
SAXS is rotationally averaged so 
we can’t predict an X-ray-like
structure, but we can check
consistency with an existing structure
For the Nup84 study we built
structures of the complete Nup133
using comparative modeling since no
X-ray structures were available

Get FoXS inputs

First, determine where they are (again, included
as IMP examples, in the ‘foxs’ module): 
$ python  
>>> import IMP.foxs  
>>> IMP.foxs.get_example_path('nup133')

Then, copy them to your working directory/
folder: 
$ mkdir foxs_example  
$ cd foxs_example  
$ cp <path_to_nup133>/* .

Get FoXS inputs

First, determine where they are (again, included
as IMP examples, in the ‘foxs’ module): 
$ python  
>>> import IMP.foxs  
>>> IMP.foxs.get_example_path('nup133')

Then, copy them to your working directory/
folder: 
$ mkdir foxs_example  
$ cd foxs_example  
$ cp <path_to_nup133>/* .

Windows users, use ‘copy’ rather than ‘cp’
and \ rather than /.

Input files

3KFO.pdb 23922_merge.dat

X-ray crystal structure of the C
terminal domain of Nup133, in
PDB format

Experimental SAXS profile of
the same structure (simple
table of intensity vs. angle,
plotted here for clarity)

Run FoXS

Run FoXS

Running FoXS is simple; we just give it the PDB
file and the profile: 
$ foxs 3KFO.pdb 23922_merge.dat

Run FoXS

Running FoXS is simple; we just give it the PDB
file and the profile: 
$ foxs 3KFO.pdb 23922_merge.dat

Output will end with something like 
3KFO.pdb 23922_merge.dat Chi = 2.95998 c1 =
1.02509 c2 = 3.3952 default chi = 9.87946

Run FoXS

Running FoXS is simple; we just give it the PDB
file and the profile: 
$ foxs 3KFO.pdb 23922_merge.dat

Output will end with something like 
3KFO.pdb 23922_merge.dat Chi = 2.95998 c1 =
1.02509 c2 = 3.3952 default chi = 9.87946

i.e. quality of fit (χ) is 2.96 (smaller is better, so
this is not great)

Why such a poor fit?

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?
Let’s look at the 3KFO.pdb file in a text editor (not a
molecular viewer), specifically REMARK 465, 470 and
999 lines

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?
Let’s look at the 3KFO.pdb file in a text editor (not a
molecular viewer), specifically REMARK 465, 470 and
999 lines

proteolysis removed residues 881-943 (REMARK 999) so
these weren’t seen in either experiment

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?
Let’s look at the 3KFO.pdb file in a text editor (not a
molecular viewer), specifically REMARK 465, 470 and
999 lines

proteolysis removed residues 881-943 (REMARK 999) so
these weren’t seen in either experiment
the X-ray experiment was unable to resolve residues 944,
945, and 1159-1165 (REMARK 465)

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?
Let’s look at the 3KFO.pdb file in a text editor (not a
molecular viewer), specifically REMARK 465, 470 and
999 lines

proteolysis removed residues 881-943 (REMARK 999) so
these weren’t seen in either experiment
the X-ray experiment was unable to resolve residues 944,
945, and 1159-1165 (REMARK 465)
16 other residues in the X-ray experiment had unresolved
side chains (REMARK 470)

Why such a poor fit?

Both the X-ray structure and the SAXS profile were
collected for the same structure, so shouldn’t they
match?
Let’s look at the 3KFO.pdb file in a text editor (not a
molecular viewer), specifically REMARK 465, 470 and
999 lines

proteolysis removed residues 881-943 (REMARK 999) so
these weren’t seen in either experiment
the X-ray experiment was unable to resolve residues 944,
945, and 1159-1165 (REMARK 465)
16 other residues in the X-ray experiment had unresolved
side chains (REMARK 470)

We can resolve these issues by filling in the missing
residues with MODELLER

Comparative modeling by satisfaction of spatial
restraints: MODELLER

3D GKITFYERGFQGHCYESDC-NLQP…

SEQ GKITFYERG---RCYESDCPNLQP…

F(R) = Π pi (fi /I)
i

2. Satisfy spatial restraints

A. Šali & T. Blundell. J. Mol. Biol. 234, 779, 1993.
J.P. Overington & A. Šali. Prot. Sci. 3, 1582, 1994.
A. Fiser, R. Do & A. Šali, Prot. Sci., 9, 1753, 2000.

 https://salilab.org/modeller/

15 17 19 21 23 2525

Cα-Cα distance [Å]

1. Extract spatial restraints

0

100

200

300

400

Fr
eq

ue
nc

y

http://salilab.org

Run FoXS on the model

Run FoXS on the model

Precalculated MODELLER model is available
for those that don’t have MODELLER

Run FoXS on the model

Precalculated MODELLER model is available
for those that don’t have MODELLER
FoXS is run in the same way as before, just on
the model: 
$ foxs 3KFO-fill.B99990005.pdb 23922_merge.dat

Run FoXS on the model

Precalculated MODELLER model is available
for those that don’t have MODELLER
FoXS is run in the same way as before, just on
the model: 
$ foxs 3KFO-fill.B99990005.pdb 23922_merge.dat

Output will end with something like 
3KFO-fill.B99990005.pdb 23922_merge.dat Chi
= 1.14507 c1 = 1.02835 c2 = 0.93184 default
chi = 6.36924

Run FoXS on the model

Precalculated MODELLER model is available
for those that don’t have MODELLER
FoXS is run in the same way as before, just on
the model: 
$ foxs 3KFO-fill.B99990005.pdb 23922_merge.dat

Output will end with something like 
3KFO-fill.B99990005.pdb 23922_merge.dat Chi
= 1.14507 c1 = 1.02835 c2 = 0.93184 default
chi = 6.36924

i.e. quality of fit (χ) is 1.1, much improved

Visualize outputs

Visualize outputs

Also generates *.dat files for plotting

Visualize outputs

Also generates *.dat files for plotting
If you have gnuplot, add -g option to get gnuplot input
files (*.plt) too: 
$ foxs -g 3KFO-fill.B99990005.pdb 23922_merge.dat 
$ gnuplot 3KFO-fill.B99990005_23922_merge.plt

Visualize outputs

Also generates *.dat files for plotting
If you have gnuplot, add -g option to get gnuplot input
files (*.plt) too: 
$ foxs -g 3KFO-fill.B99990005.pdb 23922_merge.dat 
$ gnuplot 3KFO-fill.B99990005_23922_merge.plt

Look at 
3KFO-fill.B99990005_23922_merge.png in an
image viewer

gnuplot output

FoXS web service

Alternatively, use the FoXS web service: 
https://salilab.org/foxs/
Takes same inputs, makes plots etc.

https://salilab.org/foxs/

IMP C++/Python
library

PMI

Simplicity

Ex
pr
es
si
ve
ne
ss

Chimera tools/
web services

Domain-specific applications

Just another IMP module (IMP.pmi)
A meta language for modeling
We still write Python scripts, but…

Refer to biological units rather than individual particles
Many protocols (e.g. replica exchange) already
packaged up nicely for us
Publication-ready plots are more or less automatic

Regular IMP objects are constructed, so an
advanced user can always customize things using
the full collection of IMP classes if PMI is insufficient
Today we will use PMI to model the stalk of the
RNA Polymerase II complex

PMI

Software installation for PMI

We need installed
numpy and scipy for matrix and linear algebra
scikit-learn for k-means clustering
matplotlib for plotting results
UCSF Chimera for visualization of results
IMP itself
git is very useful for tracking our work (but not essential)

Again, easiest way (for everything except Chimera) is to
install Anaconda Python, then run from a command
prompt/terminal: 
 
$ conda config --add channels salilab  
$ conda install imp git numpy scipy scikit-learn matplotlib

PMI tutorial data

PMI tutorial data

Get the tutorial files from GitHub: 
https://github.com/salilab/imp_tutorial/

https://github.com/salilab/imp_tutorial/

PMI tutorial data

Get the tutorial files from GitHub: 
https://github.com/salilab/imp_tutorial/

Best way is to clone with git: 
$ git clone https://github.com/salilab/imp_tutorial.git

https://github.com/salilab/imp_tutorial/

PMI tutorial data

Get the tutorial files from GitHub: 
https://github.com/salilab/imp_tutorial/

Best way is to clone with git: 
$ git clone https://github.com/salilab/imp_tutorial.git

If you don’t have a git client, get the zip file instead from
the “clone or download” link

https://github.com/salilab/imp_tutorial/

Why git?
https://git-scm.com/book

https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized
don’t have to use git for this, but vitally important to use some
kind of change tracking software (e.g. SVN, CVS, hg, etc.)

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized
don’t have to use git for this, but vitally important to use some
kind of change tracking software (e.g. SVN, CVS, hg, etc.)

git integrates nicely with GitHub which provides a web
front end

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized
don’t have to use git for this, but vitally important to use some
kind of change tracking software (e.g. SVN, CVS, hg, etc.)

git integrates nicely with GitHub which provides a web
front end

Simplifies collaboration on software and protocols

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized
don’t have to use git for this, but vitally important to use some
kind of change tracking software (e.g. SVN, CVS, hg, etc.)

git integrates nicely with GitHub which provides a web
front end

Simplifies collaboration on software and protocols
Our ultimate goal with any modeling is to make it public,
reproducible (see other published systems, also
managed by git: https://integrativemodeling.org/systems/)

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Why git?

git tracks who changed what and when (like an electronic
lab notebook)

often hard to keep modeling protocols organized
don’t have to use git for this, but vitally important to use some
kind of change tracking software (e.g. SVN, CVS, hg, etc.)

git integrates nicely with GitHub which provides a web
front end

Simplifies collaboration on software and protocols
Our ultimate goal with any modeling is to make it public,
reproducible (see other published systems, also
managed by git: https://integrativemodeling.org/systems/)
Helpful git commands: git log, git show, git pull,
git status, git diff, git commit, git push

https://git-scm.com/book

https://integrativemodeling.org/systems/
https://git-scm.com/book

Integrative structure modeling of  
RNA Polymerase II stalk

RNA Pol II is a eukaryotic complex that catalyzes DNA
transcription to synthesize mRNA strands
Eukaryotic RNA polymerase II contains 12 subunits,
Rpb1 to Rpb12
The yeast RNA Pol II dissociates into a 10-subunit core
and a Rpb4/Rpb7 heterodimer
Rpb4 and Rpb7 are conserved 
from yeast to humans, and form 
a stalk-like protrusion extending 
from the main body of the 
RNA Pol II complex

We want to determine the localization of two subunits of the yeast
RNA Polymerase II, Rpb4 and Rpb7 (stalk), hypothesizing that we
already know the structure of the remaining 10-subunit complex
This example utilizes:

chemical cross-linking coupled with mass spectrometry (CX-MS),
negative-stain electron microscopy (EM),
X-ray crystallography data

Integrative structure modeling of  
RNA Polymerase II stalk

For the purposes of demonstration, we’ll first model the
complex using only the EM and X-ray data

First round: modeling with EM/X-ray only

For the purposes of demonstration, we’ll first model the
complex using only the EM and X-ray data

First round: modeling with EM/X-ray only

Main modeling script

Let’s get started by getting the main modeling
script running while we look at what it’s doing

Do this by running in a terminal/command prompt: 
 
$ cd imp_tutorial/rnapolii/modeling_em  
$ python modeling.py --test

“Real” modeling will take hours, so we’re running in
‘test’ mode which generates only 100 frames
(rather than 20,000)

The script covers the first 3 steps of integrative
modeling 

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Expected script output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

$	python	modeling.py	--test	
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1,	1)	as	a	bead	
autobuild_model:	constructing	fragment	(2,	186)	from	pdb	
autobuild_model:	constructing	fragment	(187,	194)	as	a	bead	
autobuild_model:	constructing	fragment	(195,	1081)	from	pdb	
autobuild_model:	constructing	fragment	(1082,	1091)	as	a	bead	
autobuild_model:	constructing	fragment	(1092,	1140)	from	pdb	
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1141,	1176)	from	pdb	
autobuild_model:	constructing	fragment	(1177,	1186)	as	a	bead	
autobuild_model:	constructing	fragment	(1187,	1243)	from	pdb	
autobuild_model:	constructing	fragment	(1244,	1253)	as	a	bead	

Adding	sequence	connectivity	restraint	between	Rpb4_1-3_bead		and		Rpb4_4_13_pdb	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_74_76_pdb		and		Rpb4_77-96_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_77-96_bead		and		Rpb4_97-116_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_97-116_bead		and		Rpb4_117_bead	of	distance	14.4	

...

...
---	frame	1	score	4814598.44759		
---	writing	coordinates	
---	frame	2	score	3527090.92513		
---	writing	coordinates	
---	frame	3	score	2662180.99705		
---	writing	coordinates	
---	frame	4	score	2021182.74211		
---	writing	coordinates	
---	frame	5	score	1459614.23926		

Common errors

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

If you see

NameError: name 'inf' is not defined

… try running the script again 
(sometimes IMP’s initial random model results
in a very bad fit to the EM map, and the
system cannot recover)

Data for yeast RNA Polymerase II

The rnapolii/data folder (within the
imp_tutorial folder) contains, amongst
other data:

Sequence information (FASTA files for each
subunit)
Electron density maps (.mrc, .txt files)
Structure from X-ray crystallography (PDB file)

Most IMP files, including these, can be viewed
in a text editor, Chimera/VMD/other viewer, or
from the GitHub web interface
We’ll look at each data source in turn

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

UCSF Chimera

We use both VMD and UCSF Chimera in our
work, but we’re using Chimera in this tutorial
because

some of the file formats we generate are
understood only by Chimera (for now)
new IMP features generally work with Chimera
first (since the Chimera guys are just down the
hall from us)

Feel free to visualize standard formats (such
as PDB) in your favorite viewer!

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

FASTA file

1WCM.fasta.txt is a simple text file containing
sequences in FASTA format: 

>1WCM:A
MVGQQYSSAPLRTVKEVQFGLFSPEEVRAISVAKIRFPETMDETQTRAKIGG
LNDPRLGSIDRNLKCQTCQEGMNECPGHFGHIDLAKPVFHVGFIAKIKKVCE
CVCMHCGKLLLDEHNELMRQALAIKDSKKRFAAIWTLCKTKMVCETDVPSED
...
>1WCM:B
MSDLANSEKYYDEDPYGFEDESAPITAEDSWAVISAFFREKGLVSQQLDSFN
QFVDYTLQDIICEDSTLILEQLAQHTTESDNISRKYEISFGKIYVTKPMVNE
SDGVTHALYPQEARLRNLTYSSGLFVDVKKRTYEAIDVPGRELKYELIAEES
...

defines two chains with unique IDs of
1WCM:A and 1WCM:B respectively
12 chains in total, A through L

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Electron density map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Electron density map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

emd_1883.map.mrc experimental map of entire complex at 20.9Å resolution

Electron density map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

emd_1883.map.mrc experimental map of entire complex at 20.9Å resolution

Gaussian mixture models (GMMs) are used to greatly speed up scoring
by approximating the electron density of individual subunits and
experimental EM maps as a sum of 3D Gaussians. The weight, center,
and covariance matrix of each Gaussian used to approximate the
original EM density can be seen in emd_1883.map.mrc.gmm.50.txt

Electron density map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

emd_1883.map.mrc experimental map of entire complex at 20.9Å resolution

Gaussian mixture models (GMMs) are used to greatly speed up scoring
by approximating the electron density of individual subunits and
experimental EM maps as a sum of 3D Gaussians. The weight, center,
and covariance matrix of each Gaussian used to approximate the
original EM density can be seen in emd_1883.map.mrc.gmm.50.txt

X-ray structures

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

1WCM.pdb high resolution coordinates for all
12 chains of RNA Pol II

Model representation in IMP

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Representation is defined by all the variables that need to be
determined based on input information (e.g. points, spheres,
ellipsoids, and 3D Gaussian density functions)

We use spherical beads and 3D Gaussians

Beads and Gaussians of a given domain are arranged into 
either a rigid body or a flexible string

Model representation in IMP

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Note that our representation is multi-scale

i.e. we use both low resolution and high resolution bead
and Gaussian representations of the model
simultaneously (“resolution 1”; 1 residue per spherical
bead, and “resolution 20”: 20 residues per bead)
Restraints are applied to the most appropriate
representation

Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Even though we have X-ray structures, not all residues
were resolved (yellow regions)

Rpb7

1711

Rpb4

1
4

77 118 177

Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Even though we have X-ray structures, not all residues
were resolved (yellow regions)

Would be over-interpretation of the data to try to
represent this at high resolution

Rpb7

1711

Rpb4

1
4

77 118 177

Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Even though we have X-ray structures, not all residues
were resolved (yellow regions)

Would be over-interpretation of the data to try to
represent this at high resolution

Use low resolution beads (up to 20 residues per bead)
instead here

Rpb7

1711

Rpb4

1
4

77 118 177

Handling of missing structure

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Even though we have X-ray structures, not all residues
were resolved (yellow regions)

Would be over-interpretation of the data to try to
represent this at high resolution

Use low resolution beads (up to 20 residues per bead)
instead here

Treat resolved regions as rigid bodies, allow unresolved
regions to move (floppy bodies)

Rpb7

1711

Rpb4

1
4

77 118 177

IMP topology file

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

rnapolii/data/topology.txt The topology file
stores the basic information needed to create a
structural model in IMP:
|directories|
pdb_dir	./
fasta_dir	./
gmm_dir	./

|topology_dictionary|
|component_name|domain_name|fasta_fn|fasta_id|pdb_fn|chain|residue_range|pdb_offset|
bead_size|em_residues_per_gaussian|
Rpb1	Rpb1_1	1WCM_new.fasta.txt	1WCM:A	1WCM_map_fitted.pdb	A	1,1140	0	20	0
Rpb1	Rpb1_2	1WCM_new.fasta.txt	1WCM:A	1WCM_map_fitted.pdb	A	1141,1274	0	20	0
Rpb1	Rpb1_3	1WCM_new.fasta.txt	1WCM:A	1WCM_map_fitted.pdb	A	1275,1455	0	20	0
Rpb2	Rpb2_1	1WCM_new.fasta.txt	1WCM:B	1WCM_map_fitted.pdb	B	1,1102	0	20	0
Rpb2	Rpb2_2	1WCM_new.fasta.txt	1WCM:B	1WCM_map_fitted.pdb	B	1103,-1	0	20	0
Rpb3	Rpb3	1WCM_new.fasta.txt	1WCM:C	1WCM_map_fitted.pdb	C	all	0	20	0
Rpb4	Rpb4	1WCM_new.fasta.txt	1WCM:D	1WCM_map_fitted.pdb	D	all	0	20	40
Rpb5	Rpb5	1WCM_new.fasta.txt	1WCM:E	1WCM_map_fitted.pdb	E	all	0	20	0
Rpb6	Rpb6	1WCM_new.fasta.txt	1WCM:F	1WCM_map_fitted.pdb	F	all	0	20	0
Rpb7	Rpb7	1WCM_new.fasta.txt	1WCM:G	1WCM_map_fitted.pdb	G	all	0	20	40
Rpb8	Rpb8	1WCM_new.fasta.txt	1WCM:H	1WCM_map_fitted.pdb	H	all	0	20	0
Rpb9	Rpb9	1WCM_new.fasta.txt	1WCM:I	1WCM_map_fitted.pdb	I	all	0	20	0
Rpb10	Rpb10	1WCM_new.fasta.txt	1WCM:J	1WCM_map_fitted.pdb	J	all	0	20	0
Rpb11	Rpb11	1WCM_new.fasta.txt	1WCM:K	1WCM_map_fitted.pdb	K	all	0	20	0
Rpb12	Rpb12	1WCM_new.fasta.txt	1WCM:L	1WCM_map_fitted.pdb	L	all	0	20	0

Evaluation

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

At this point we need to create our scoring
function, by which the individual structural
models will be scored based on the input
data
A simple sum of individual restraints
Each restraint maps to one of our input
experiments or other physical/statistical
information
We’ll look at each restraint in turn

Sequence connectivity restraint
We know that 
residues that are 
adjacent in 
sequence will also  
be close in space, 
due to the peptide bond
We should enforce this in our modeling
by adding simple harmonic restraints
between beads (flexible string)
PMI handles this automatically based
on the FASTA file

nothing further needed in our script

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

H3N+ Gly Ile Val Cys Glu Gln

Ala

Ser

Leu
Asp

ArgCys
Val

Pro

Lys
Phe

Tyr
Thr Leu His

Lys
Asn COO-

Excluded volume restraint

We also know that one protein cannot occupy
the same space as another
The excluded volume restraint is calculated at
resolution 20 (20 residues per bead)

Faster to evaluate, but more approximate
We’re maintaining a list of ‘output objects’,
and this will be one of them

Statistics on such objects (e.g. whether the
score is satisfied) will be collected during the
modeling

 ev = IMP.pmi.restraints.stereochemistry.ExcludedVolumeSphere(
 representation, resolution=20)
 ev.add_to_model()
 outputobjects.append(ev)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Compare IMP.pmi’s
ExcludedVolumeSphere restraint with the
IMP.core SingletonRestraint seen earlier
in the example Python script

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Compare IMP.pmi’s
ExcludedVolumeSphere restraint with the
IMP.core SingletonRestraint seen earlier
in the example Python script
Core IMP restraints act on explicitly defined
particles (bottom up)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Compare IMP.pmi’s
ExcludedVolumeSphere restraint with the
IMP.core SingletonRestraint seen earlier
in the example Python script
Core IMP restraints act on explicitly defined
particles (bottom up)
PMI restraints act on named biological units
(or the entire system, as in this case; top
down)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Compare IMP.pmi’s
ExcludedVolumeSphere restraint with the
IMP.core SingletonRestraint seen earlier
in the example Python script
Core IMP restraints act on explicitly defined
particles (bottom up)
PMI restraints act on named biological units
(or the entire system, as in this case; top
down)
PMI restraints are automatically multi-scale
(unlike core restraints)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

PMI vs. core IMP restraints

Compare IMP.pmi’s
ExcludedVolumeSphere restraint with the
IMP.core SingletonRestraint seen earlier
in the example Python script
Core IMP restraints act on explicitly defined
particles (bottom up)
PMI restraints act on named biological units
(or the entire system, as in this case; top
down)
PMI restraints are automatically multi-scale
(unlike core restraints)
Most PMI restraints simply ‘wrap’ one or more
underlying core IMP restraints

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

EM restraint

We’re using a density overlap function to
compare the GMM approximation of our model
(em_components) with that of the EM map
itself (target_gmm_file)

scale_to_target_mass ensures the total
masses of model and map are identical
slope: nudge model closer to map when far
away (i.e. zero GMM overlap)
weight: heuristic, needed to calibrate the EM
restraint with the other terms

em_components = bm.get_density_hierarchies([t.domain_name for t in domains])
gemt = IMP.pmi.restraints.em.GaussianEMRestraint(em_components,
 target_gmm_file,
 scale_target_to_mass=True,
 slope=0.000001,
 weight=80.0)
gemt.add_to_model()
outputobjects.append(gemt)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Other restraints

Note that we’re not using electrostatics or
stereochemistry; very different to a typical
molecular mechanics simulation

Electrostatics usually not relevant on this scale
Where it is, it is considered implicitly (from the
input structures)
No atomic data in this case, so no
stereochemistry
Can use CHARMM forcefield if we do have
atoms

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We’re going to use Monte Carlo to sample (not minimize)
our system (generate many models that satisfy the data)

Thus, need to define a set of movers

Perturb the system
(apply movers to all
sampled objects)

Evaluate the score
(restraints)

Reject the
perturbation

Apply the
perturbation

Acceptable score
based on Metropolis

criterion?

Yes No

Monte Carlo setup

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 #--------------------------
 # Set MC Sampling Parameters
 #--------------------------
 num_frames = 20000
 num_mc_steps = 10

 #--------------------------
 # Create movers
 #--------------------------

 # rigid body movement params
 rb_max_trans = 2.00
 rb_max_rot = 0.04

 # flexible bead movement
 bead_max_trans = 3.00

 rigid_bodies = [["Rpb4"],
 ["Rpb7"]]
 super_rigid_bodies = [["Rpb4","Rpb7"]]
 chain_of_super_rigid_bodies = [["Rpb4"],
 ["Rpb7"]]

Rigid body
movers: simple
3D translation
and rotation,
sampled linearly
up to given
maximum values
Bead movers: 3D
translation
Also we define
here how to move
our rigid bodies

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

floppy bodies
(flexible beads)

rigid body

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

rigid_bodies defines the components that will be moved as rigid
bodies (in this case, the parts of Rpb4 and Rpb7 for which we have
X-ray structure). Unstructured regions will move as flexible beads.

floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

super_rigid_bodies defines sets of
rigid bodies and beads that will
move together in an additional
Monte Carlo move.

floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

super_rigid_bodies defines sets of
rigid bodies and beads that will
move together in an additional
Monte Carlo move.

floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs and
triplets. Each of these groups will be moved rigidly. This mover
helps to sample more efficiently complex topologies, made of
several rigid bodies, connected by flexible linkers.

floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs and
triplets. Each of these groups will be moved rigidly. This mover
helps to sample more efficiently complex topologies, made of
several rigid bodies, connected by flexible linkers.

floppy bodies
(flexible beads)

rigid body
super rigid body (srb)

chain of srbs

Rigid body movers

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

chain_of_super_rigid_bodies sets additional Monte Carlo movers
along the connectivity chain of a subunit. It groups sequence-
connected rigid domains and/or beads into overlapping pairs and
triplets. Each of these groups will be moved rigidly. This mover
helps to sample more efficiently complex topologies, made of
several rigid bodies, connected by flexible linkers.

Sampling

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

mc1=IMP.pmi.macros.ReplicaExchange0(m,
 representation,
 monte_carlo_sample_objects=sampleobjects,
 output_objects=outputobjects,
 monte_carlo_temperature=1.0,
 simulated_annealing=True,
 simulated_annealing_minimum_temperature=1.0,
 simulated_annealing_maximum_temperature=2.5,
 simulated_annealing_minimum_temperature_nframes=200,
 simulated_annealing_maximum_temperature_nframes=20,
 replica_exchange_minimum_temperature=1.0,
 replica_exchange_maximum_temperature=2.5,
 number_of_best_scoring_models=100,
 monte_carlo_steps=num_mc_steps,
 number_of_frames=num_frames,
 global_output_directory="output")

Finally, we run the Monte Carlo sampling itself

Technically this is replica exchange (as the class name
suggests)

Replica exchange
Multiple simulations run in parallel, at different temperatures
Periodically, coordinates/temperatures may be swapped
Helps to overcome local minima with little communication
overhead

If IMP is built with MPI support and run with mpirun, will do
replica exchange (1 replica per process)
In this case, we are running only a single process so no
exchange occurs (thus, equivalent to regular Monte Carlo)

Low T

High T

Temperature
exchange

Script output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

$	python	modeling.py	--test	
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1,	1)	as	a	bead	
autobuild_model:	constructing	fragment	(2,	186)	from	pdb	
autobuild_model:	constructing	fragment	(187,	194)	as	a	bead	
autobuild_model:	constructing	fragment	(195,	1081)	from	pdb	
autobuild_model:	constructing	fragment	(1082,	1091)	as	a	bead	
autobuild_model:	constructing	fragment	(1092,	1140)	from	pdb	
autobuild_model:	constructing	Rpb1	from	pdb	../data/./1WCM_map_fitted.pdb	and	chain	A	
autobuild_model:	constructing	fragment	(1141,	1176)	from	pdb	
autobuild_model:	constructing	fragment	(1177,	1186)	as	a	bead	
autobuild_model:	constructing	fragment	(1187,	1243)	from	pdb	
autobuild_model:	constructing	fragment	(1244,	1253)	as	a	bead	

Adding	sequence	connectivity	restraint	between	Rpb4_1-3_bead		and		Rpb4_4_13_pdb	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_74_76_pdb		and		Rpb4_77-96_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_77-96_bead		and		Rpb4_97-116_bead	of	distance	14.4	
Adding	sequence	connectivity	restraint	between	Rpb4_97-116_bead		and		Rpb4_117_bead	of	distance	14.4	

...

...
---	frame	1	score	4814598.44759		
---	writing	coordinates	
---	frame	2	score	3527090.92513		
---	writing	coordinates	
---	frame	3	score	2662180.99705		
---	writing	coordinates	
---	frame	4	score	2021182.74211		
---	writing	coordinates	
---	frame	5	score	1459614.23926		

Output data

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Initial structure (RMF format)

PDBs of the best scoring
models (updated

throughout the simulation)

the trajectory (RMF format)

replica exchange statistics

a stat file containing all
useful information on
outputobjects

A directory output is created, looking like:

RMF file format

Clear to see that PDB is not well suited for non-
atomic structures
So, IMP uses RMF format files for coarse-grained
structures

File format designed to store hierarchical molecular data
Binary, so efficient for storage of trajectories
Not limited to traditional atom-residue-chain
relationships; can store arbitrary hierarchies, multiple
states, and coarse-grained models
Can also store non-Cartesian data, such as individual
restraint scores

Drawback: limited viewer support (basically just
Chimera)
PDB’s next generation file format (mmCIF) will
natively support this class of structure (including but
not limited to IMP structures)

https://integrativemodeling.org/rmf/

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

https://integrativemodeling.org/rmf/

Analysis

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Many steps involved in analysis; only a subset
covered here and in the earlier Nup84 talk
Daniel will talk in more detail about this tomorrow

Low	
variance

Best scoring
models from all
sampling runs

4. Fit to data not
used in modeling

3. Resampling
 jackknifing
 bootstrapping
 cross-validation

Split	into	two	(or	
more)	independent	
samples

5. Biological sense

1. Sampling Convergence
Clustering

χ2 test

Precision

Visual Analysis
Pass

2. Analyze fit to
input information

Consistent

Validated		
Model

Consistent

Yes

Localization	
density

Clustering

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

A simple clustering protocol is shown in 
rnapolii/analysis/clustering_em.py

Simply run with 
$ cd ../analysis  
$ python clustering_em.py

k-means clustering after discarding bad-scoring models, using
comparisons of Rpb4 and Rpb7 positions (RMSD)

Can be used to merge multiple independent runs

 num_clusters = 1 # how many clusters to create
 num_top_models = 5 # total number of best models to analyze
 merge_directories = ["../modeling_em/"]# directories to analyze
 prefiltervalue = 2900.0 # prefilter by score

Also generates localization densities - maps showing the
probability of finding each protein at each point in space - that
give a good idea of the “spread” of all models in the cluster

Clustering output
For demonstration a very small single cluster (5 top
models) is generated, from a very short sampling run
Outputs shown here are from the complete run
(without --test), 100 top models put into 2 clusters

Provided in em_full_kmeans_100_2.zip

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Directory name includes
number of top models plus
number of clusters

Subdirectory for each
cluster, largest first

Cluster models in PDB and
RMF format

Localization densities in 
MRC format

Statistics on the cluster
Distance matrix and dendrogram

View in Chimera

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Rpb4 density

Rpb7 density

Native structure
of other subunits
(1-residue beads)

EM density map,
as mesh

Iteration

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Iteration

Modeling output can suggest new
experiments

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Iteration

Modeling output can suggest new
experiments
In this case it’s clear from looking at the
localization densities that while Rpb4 and
Rpb7 are placed in the EM map, most likely
the protein-protein interfaces are not correct
(no orientation dependence)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Iteration

Modeling output can suggest new
experiments
In this case it’s clear from looking at the
localization densities that while Rpb4 and
Rpb7 are placed in the EM map, most likely
the protein-protein interfaces are not correct
(no orientation dependence)
In more complex modeling with more
subunits, their arrangement may not be
pinned down

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Iteration

Modeling output can suggest new
experiments
In this case it’s clear from looking at the
localization densities that while Rpb4 and
Rpb7 are placed in the EM map, most likely
the protein-protein interfaces are not correct
(no orientation dependence)
In more complex modeling with more
subunits, their arrangement may not be
pinned down
Pairwise residue interaction data should
improve these interfaces

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

We’ll add data from chemical cross-linking coupled with
mass spectrometry (CX-MS) to the existing EM and X-ray

Addition of CX-MS data

We’ll add data from chemical cross-linking coupled with
mass spectrometry (CX-MS) to the existing EM and X-ray

Addition of CX-MS data

Running the new script

As before, let’s get the new main modeling
script running while we look at what it’s doing: 
 
$ cd imp_tutorial/rnapolii/modeling  
$ python modeling.py --test

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Running the new script

As before, let’s get the new main modeling
script running while we look at what it’s doing: 
 
$ cd imp_tutorial/rnapolii/modeling  
$ python modeling.py --test

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Note that we’re running a script in the modeling
directory (not modeling_em) this time

Running the new script

As before, let’s get the new main modeling
script running while we look at what it’s doing: 
 
$ cd imp_tutorial/rnapolii/modeling  
$ python modeling.py --test

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Data for yeast RNA Polymerase II

The rnapolii/data folder (within the
imp_tutorial folder) contains, amongst
other data:

Sequence information (FASTA files for each
subunit)
Electron density maps (.mrc, .txt files)
Structure from X-ray crystallography (PDB file)
Chemical cross-linking datasets (two data sets,
one from Al Burlingame's lab, and another from
Juri Rappsilber's lab)

Only the CX-MS data is new here

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Chemical cross-links

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

polii_xlinks.csv and polii_juri.csv: multiple
comma-separated columns; four of these
specify the protein and residue number for
each of the two linked residues:

prot1,res1,prot2,res2
Rpb1,34,Rpb1,49
Rpb1,101,Rpb1,143
Rpb1,101,Rpb1,176

(The length of the DSS/BS3 cross-linker
reagent, 21Å, is not in this file; it’ll be specified
in the modeling script.)

Cross-linking restraints

Restrain residue pairs based on the cross-links files
Residue-level information, so apply at “resolution 1”
Length of cross-linker given here
The restraint is Bayesian with ψ and σ noise
parameters

We’ll need to sample those parameters later at the
same time as the xyz coordinates (sampleobjects)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

xl1 = IMP.pmi.restraints.crosslinking.ISDCrossLinkMS(representation,
 datadirectory+'polii_xlinks.csv',
 length=21.0,
 slope=0.01,
 columnmapping=columnmap,
 resolution=1.0,
 label="Trnka",
 csvfile=True)

xl1.add_to_model()
sampleobjects.append(xl1)
outputobjects.append(xl1)

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link
In practice, too many parameters (overfitting)

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link
In practice, too many parameters (overfitting)
In this case, we assume

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link
In practice, too many parameters (overfitting)
In this case, we assume

Each cross-link dataset has a single ψ

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link
In practice, too many parameters (overfitting)
In this case, we assume

Each cross-link dataset has a single ψ
All residues have the same σ for a dataset

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

The Bayesian restraint accounts for uncertainty in
position, σ, by restraining intersphere distance
between residues 
 

Confidence in the cross-links themselves is
measured with another parameter, ψ
In principle, could optimize σ and ψ for every
cross-link
In practice, too many parameters (overfitting)
In this case, we assume

Each cross-link dataset has a single ψ
All residues have the same σ for a dataset

So, we will sample σ1, σ2, ψ1, ψ2 during our
modeling

Bayesian scoring function for XL-MS

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Residue 1 Residue 2

r’
σ1 σ2

Sampling

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

mc1=IMP.pmi.macros.ReplicaExchange0(m,
 representation,
 monte_carlo_sample_objects=sampleobjects,
 output_objects=outputobjects,
 crosslink_restraints=[xl1,xl2],
 monte_carlo_temperature=1.0,
 simulated_annealing=True,
 simulated_annealing_minimum_temperature=1.0,
 simulated_annealing_maximum_temperature=2.5,
 simulated_annealing_minimum_temperature_nframes=200,
 simulated_annealing_maximum_temperature_nframes=20,
 replica_exchange_minimum_temperature=1.0,
 replica_exchange_maximum_temperature=2.5,
 number_of_best_scoring_models=100,
 monte_carlo_steps=num_mc_steps,
 number_of_frames=num_frames,
 global_output_directory="output")

Essentially, the same as before

crosslink_restraints ensures that our cross-links
are added to output models (for visualization)

Note that we also move non-Cartesian parameters for our
Bayesian restraints, as per sampleobjects

As before, this generates an output directory

Modeling output

Similar output to before, with the addition of
crosslink setup info:

Generating a NEW crosslink restraint with a uniqueID 100

ISDCrossLinkMS: generating cross-link restraint between
ISDCrossLinkMS: residue 1 of chain Rpb4 and residue 72 of
chain Rpb6
ISDCrossLinkMS: with sigma1 1.000000 sigma2 1.000000 psi 0.05
ISDCrossLinkMS: between particles
Rpb4_1-3_bead_floppy_body_rigid_body_member and Rpb6_72_pdb
==

Output RMF files now contain cross-link info

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Modeling statistics

output/stat.0.out is a simple text format
file containing modeling statistics
output/pmi_plot_stat.py can make
simple plots, or it’s easy to parse yourself
e.g. can plot the EM score
(GaussianEMRestraint_None) as a function of
time: 
$ python pmi_plot_stat.py  
 -y GaussianEMRestraint_None stat.0.out

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Modeling statistics

output/stat.0.out is a simple text format
file containing modeling statistics
output/pmi_plot_stat.py can make
simple plots, or it’s easy to parse yourself
e.g. can plot the EM score
(GaussianEMRestraint_None) as a function of
time: 
$ python pmi_plot_stat.py  
 -y GaussianEMRestraint_None stat.0.out

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

This should all be on one line

Example plots

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

As expected, the EM score drops as the
simulation proceeds:

Example plots

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Bayes σ parameter ends up around 10Å
(makes sense given the model resolution)

Analysis

In the analysis stage we cluster (group by
similarity) the sampled models to determine
high-probability configurations. Comparing
clusters may indicate that there are multiple
acceptable configurations given the data
Cluster precision: Determining the within-
group precision and between-group similarity
via RMSD
Cluster accuracy: Fit of the calculated clusters
to the true (known) solution
Sampling exhaustiveness: Qualitative and
quantitative measurement of sampling
completeness

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Clustering

We’ll cluster in the same way as before, using 
rnapolii/analysis/clustering.py

Simply run with 
$ cd ../analysis  
$ python clustering.py

Almost identical to the EM-only clustering 
script; only merge_directories is changed 
 
 

As before, pre-generated analysis for the full run
is also provided, in full_kmeans_100_2.zip

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 num_clusters = 1 # how many clusters to create
 num_top_models = 5 # total number of best models to analyze
 merge_directories = ["../modeling/"] # directories to analyze
 prefiltervalue = 2900.0 # prefilter by score

Clustering: step 1, alignment

First step in clustering is to put all structures
into the same reference frame

This is done by setting align_names, listing
the subunit(s) to use as a reference

Not needed in this case (set to special Python
value None) because all structures are
already aligned - to the EM map

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 align_names = None # (None because EM provides reference frame)

Clustering: step 2, distance calculation

Next step: calculate distances between
structures (RMSD)

This is done by setting rmsd_names

Distances will be calculated between the
subunits listed here

k-means algorithm then proceeds using this
distance metric

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 rmsd_names = {"Rpb4":"Rpb4",
 "Rpb7":"Rpb7"}

Clustering: step 3, localization densities

Calculate localization densities for
selected subunits
This is done by setting density_names

Key: output file names
Value: list of subunits to calculate
localization density of

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 density_names = {"Rpb4":["Rpb4"],
 "Rpb7":["Rpb7"]}

Clustering: step 4, statistics

A cluster-specific stats file is also
generated
We can also ask for features to be copied
in from the original stats file by setting
feature_list

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 feature_list=["ISDCrossLinkMS_Distance_intrarb",
 "ISDCrossLinkMS_Distance_interrb",
 "ISDCrossLinkMS_Data_Score",
 "GaussianEMRestraint_None",
 "SimplifiedModel_Linker_Score_None",
 "ISDCrossLinkMS_Psi",
 "ISDCrossLinkMS_Sigma"]

Clustering output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Distance matrix and dendrogram (dist_matrix.pdf) of
the models after being grouped into clusters. The matrix
should show the requested number of clusters with much
lower within-cluster than between-cluster distance. If this is
not the case, then perhaps too many clusters were chosen.

View in Chimera

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Rpb4 density

Rpb7 density

Native structure
of other subunits
(1-residue beads)

EM density map,
as mesh

Cluster precision

Now that we’ve clustered, we can determine
the within- and between-cluster RMSD, 
i.e. precision
Do this with the precision_rmsf.py script: 
$ python precision_rmsf.py
As before, we need to specify in this script
the subunits we want the precision of (here,
each of Rpb4 and Rpb7, plus both of them
together):

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

 selections={"Rpb4":["Rpb4"],
 "Rpb7":["Rpb7"],
 "Rpb4_Rpb7":["Rpb4","Rpb7"]}

Precision output

Generates, inside the cluster output
directories: 
precision.0.0.out  
 
precision.1.1.out  
 
precision.0.1.out  
 

Each shows the precision of the requested
subunits

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Precision of cluster.0

Precision of cluster.1

Between-cluster
precision

For each cluster, generates 
rmsf.Rpb4.dat  
 
rmsf.Rpb4.pdf  
 

RMSF output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Raw RMSF data
(fluctuation of each
residue’s position
over all models in the
cluster) for Rpb4

Plot of this data

For each cluster, generates 
rmsf.Rpb4.dat  
 
rmsf.Rpb4.pdf  
 

RMSF output

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Raw RMSF data
(fluctuation of each
residue’s position
over all models in the
cluster) for Rpb4

Plot of this data

Cluster accuracy

If we know the native structure, we can
compare each of the cluster models against
it to quantify the accuracy
Do this with the accuracy.py script: 
$ python accuracy.py
We select our subunits exactly as for
precision, and also need to provide the
reference structure and the set of models to
compare:

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

reference_rmf = "../data/native.rmf3"
rmfs = glob.glob('kmeans_*_*/cluster.0/*.rmf3')

Sampling exhaustiveness

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling exhaustiveness

How confident can we be that we’ve done
enough sampling?

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling exhaustiveness

How confident can we be that we’ve done
enough sampling?

a variety of methods exist, not covered in this
tutorial

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling exhaustiveness

How confident can we be that we’ve done
enough sampling?

a variety of methods exist, not covered in this
tutorial
for example, two independent runs should
sample from the same distribution - can test
statistically (χ2 test), or by comparing clusters
(as in the Nup84 study)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling exhaustiveness

How confident can we be that we’ve done
enough sampling?

a variety of methods exist, not covered in this
tutorial
for example, two independent runs should
sample from the same distribution - can test
statistically (χ2 test), or by comparing clusters
(as in the Nup84 study)
model leaving out some of the data (jackknife,
compare with R free calculation)

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Sampling exhaustiveness

How confident can we be that we’ve done
enough sampling?

a variety of methods exist, not covered in this
tutorial
for example, two independent runs should
sample from the same distribution - can test
statistically (χ2 test), or by comparing clusters
(as in the Nup84 study)
model leaving out some of the data (jackknife,
compare with R free calculation)
Daniel will talk more about this tomorrow

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

Iteration

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

If necessary (or if new data become available)
we can continue iterating

Gathering 
information

Analyzing models 
and information

Sampling 
models

Designing model 
representation 
and evaluation

https://integrativemodeling.org/

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman,
F. Alber, B. Peterson, A. Sali, PLoS Biol, 2012.
R. Pellarin, M. Bonomi, B. Raveh, S. Calhoun, C. Greenberg, G.Dong, S.J.
Kim, D. Saltzberg, I. Chemmama, S. Axen, S. Viswanath.

Integrative modeling provides structural models where
individual experimental methods fail

The Integrative Modeling Platform (IMP) is a toolbox for
solving integrative modeling problems

Generate multi-scale (also multi-state, time ordered)
ensembles of models consistent with multiple sources
of information

Conclusion

https://integrativemodeling.org/

