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To understand and modulate cellular processes, we need their models.

These models are best generated by considering all available information.



Towards a spatial, temporal, and logical model of the cell?
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Structural biology:
Maximize accuracy, resolution, completeness, and efficiency of
the structural coverage of macromolecular assemblies

Motivation: Models will allow us to understand how machines work, how they evolved, how
they can be controlled, modified, and perhaps even designed.

flagellar motor

There may be thousands
of biologically relevant
macromolecular
complexes whose
structures are yet to be
characterized, involved
in a few hundred core
biological processes.

GroEL chaperonin ATP synthase nuclear pore Compl ribosome



Integrative Structural Biology

for maximizing accuracy, resolution, completeness, and efficiency of structure determination

Use structural information from any
PHYSICS *® N INTUITION

source: measurement, first principles, rules; J
resolution: low or high resolution ’
to obtain the set of all models that are consistent with it.
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Sali A, Earnest T, Glaeser R, Baumeister W. From words to literature in structural proteomics. Nature 422, 216-225, 2003.
Ward A, Sali A, Wilson [. Integrative structural biology. Science 339, 913-915, 2013.




A description of integrative structure determination

Sali et al. Nature 422, 216-225, 2003.
Alber et al. Nature 450, 683-694, 2007

Robinson et al. Nature 450, 974-982, 2007 » Experiment
Alber et al. Ann.Rev.Biochem. 77, 11.1-11.35, 2008
Russel et al. PLoS Biology 10, 2012 _
Ward et al. Science 339, 913-915, 2013 _ Hypothesis ’
Schneidman et al. Curr.Opin.Str.Biol., 2014. ‘)-o Bait Model
|
Gathering &I =
information column  PAGE
: Cryo-electron Immuno-electron
W microscopy microscopy Affinity purification

Designing model
representation
and evaluation
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! Analyzing models
“* and information

While it may be hard to live with generalization, it is inconceivable to live without it. Peter Gay, Schnitzler’s Century (2002).



Integrative structure determination

» Uses multiple types of information (experiments, physical theory, statistical inference).
« Maximizes accuracy, resolution, completeness, and efficiency of the structure determination.
 Finds all models whose computed data match the experimental data within an acceptable threshold.

X-ray
crystallography

Sampling and scoring

Sali et al. Nature 422, 216-225, 2003.

Alber et al. Nature 450, 683-694, 2007

Robinson et al. Nature 450, 974-982, 2007

Alber et al. Ann.Rev.Biochem. 77, 11.1-11.35, 2008
Russel et al. PLoS Biology 10, 2012

Ward et al. Science 339, 913-915, 2013
Schneidman et al. Curr.Opin.Str.Biol., 96-104, 2014.
Sali et al. Structure 23, 1156-1167, 2015.

»\ Experiment [
\ Hypothesis ’
Model ¥

A model is built iteratively, contributes continuously.

While it may be hard to live with generalization, it is
inconceivable to live without it.

Peter Gay, Schnitzler's Century (2002).



Alber et al. Nature 450, 684-694, 2007.

Conflguratlon Of 456 prOtel ns Alber et al. Nature 450, 695-702, 2007.

in the Nuclear Pore Complex

with M. Rout & B. Chait Immuno-
Electron
Microscopy
Quantitative 10,615
Immunoblotting ~ gold particles
30 relative Protein -.}‘ 2 ':, ; ’- 5.", | :) ’=J' og‘,' ,’y,; Protein E
abundances Stoichiometry B e '};.’ g7 TR ?i. Localization
Cuantitation of NUPs — »"’ ) T eg > M N — E_
i : , |
Electron
Affinity Overlay Microscopy
Purification Assay
* ) . electron MiCI'OSCOpy
75 composites 7 contacts Protein-protein o
: O" Proximities Symmetry
. § e I —
) $
Bioinformatics and
Itracentrif ion
Ultracentrifugatio B ' (™ Membrane
oo — Fractionation
30 S-values 1 S-value 30 protein
sequences




Alber et al. Nature 450, 684-694, 2007.

Conflguratlon Of 456 prOtel ns Alber et al. Nature 450, 695-702, 2007.

in the Nuclear Pore Complex

with M. Rout & B. Chait Immuno-
Electron
Microscopy
Quantitative 10,615
Immunoblotting ~ gold particles
30 relative Protein -.}‘ 2 ':, ; ’- 5.", | :) ’=J' og‘,' ,’y,; Protein E
abundances Stoichiometry B e '};.’ g7 TR ?i. Localization
Cuantitation of NUPs — »"’ ) T eg > M N — E_
i : , |
Electron
Affinity Overlay Microscopy
Purification Assay
* ) . electron MiCI'OSCOpy
75 composites 7 contacts Protein-protein o
: O" Proximities Symmetry
. § e I —
) $
Bioinformatics and
Itracentrif ion
Ultracentrifugatio B ' (™ Membrane
oo — Fractionation
30 S-values 1 S-value 30 protein
sequences




Integrative structure models from our lab
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Integrative Modeling Platform (IMP)

http://integrativemodeling.org

D. Russel, K. Lasker, B. Webb, J. Velazquez-Muriel, E. Tjioe, D. Schneidman, F. Alber, B. Peterson, A. Sali, PLoS Biol, 2012.
R. Pellarin, M. Bonomi, B. Raveh, S. Calhoun, C. Greenberg, G.Dong, S.J. Kim, I. Chemmama, D. Saltzberg, S. Viswanath

Open source, versions, documentation, wiki, examples, mailing lists, unit testing, bug tracking, ...
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Representation:
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Analysis:
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Integration across computational resources
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PROTEIN DATA BANK

Andrej Sali, Helen M. Berman, Torsten Schwede, Jill
Trewhella, Gerard Kleywegt, Stephen K. Burley, John
Markley, Haruki Nakamura, Paul Adams, Alexandre Bonvin,
Wah Chiu, Tom Ferrin, Kay Grlunewald, Aleksandras
Gutmanas, Richard Henderson, Gerhard Hummer, Kenji
lwasaki, Graham Johnson, Cathy Lawson, Frank di Maio,
Jens Meiler, Marc Marti-Renom, Guy Montelione, Michael
Nilges, Ruth Nussinov, Ardan Patwardhan, Matteo dal Peraro,
Juri Rappsilber, Randy Read, Helen Saibil, Gunnar Schroder,
Charles Schwieters, Claus Seidel, Dmitri Svergun, Maya Topf,
Eldon Ulrich, Sameer Velankar, and John D. Westbrook.
Structure 23, 1156-1167, 2015.

First Integrative Methods Task Force Workshop was held at the European Bioinformatics Institute in Hinxton, UK, on
October 6 and 7, 2014:

What should be archived?

How should integrative models be represented?

How should the data and integrative models be validated?
How should the data and models be archived?

What information should accompany the publication of integrative models?



Representation of integrative models

Schneidman et al, COSB, 2014.
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(without over fitting) such that the resulting models are maximally useful for subsequent
biological analysis:
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Representation of integrative models

1. Accommodate as many types of “structural” models as possible.
2. Agreement on model representation is key for maximizing community collaboration.

3. An optimal representation facilitates accurate formulation of spatial restraints together with
efficient and complete sampling of good-scoring solutions, while retaining sufficient detail
(without over fitting) such that the resulting models are maximally useful for subsequent
biological analysis:

1. multi-scale models (atoms, unified atoms, secondary el Re—

structure segments, protein domains described by o
points, spheres, ellipsoids, gaussians, ...). = A
2. multi-state models (all states needed to explain the
data) 9
B. Multi-state D. Ensemble

3. ordering of states in time (eg, a trajectory, functional

—e v
cycle)
A% ¢
4. ensemble of models (each model on its own explains Y
the data; eg, NMR, SAXS) ¢

4. Uncertainty of the model coordinates should be explicitly considered.

5. Non-particle-based model representations (eg, continuum representations) need further
consideration.

Schneidman et al, COSB, 2014.



Pushing the envelope of structural biology by
integration of all available information

e Size

« Static systems in single and multiple states

* Dynamic systems

* Bulk and single molecule views

* Impure samples

 Overlapping with other domains such as systems biology




Challenges in interpreting the data in terms of a
structural model

1. Model representation
2. Sampling
3. Scoring function:

« Sparseness, due to incompleteness of measurements

* Error, due to measurement and other imperfections

« Ambiguity, due to, eg, multiple copies of a protein in a system

* Incoherence (mixture), due to multiple states of a system in a
heterogenous sample




Scoring function

Rank models based on all available information:
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Scoring function

Rank models based on all available information:

M model

D measured data point

f computed data point
(forward model)

w  weight of data point

1. Least-squares scoring function:

S(M) = ) wiID; = fi(MD)F

2. Bayesian scoring function:

p(M|D,I) x p(D|M,I)-p(M|I) [ prior information
posterior likelihood prior
1
D — f(M)

Posterior is the probability density of model M, given data D and information 1.

Model M can include coordinates of one or more structures as well as additional parameters
(noise levels, weights, calibration parameters, ...).

Likelihood is the probability density of observing data D, given model M and prior information /
(by relying on a model of noise and a forward model, which computes data D given model M).

Prior is the probability density of model M, given prior information 1.

p(AB) =pBA)=p(A)- p(B/A) =pB)- p(A/B) Rieping, Habeck, Nilges. Science, 2005
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Very low-resolution modeling of large
assemblies

Many times the structures of some subunits are not available.

In such cases, we can only model the configuration of the subunits
In the complex.

residues proteins



Nuclear Pore Complex (NPC)

_S. cerevisae nucleus 1. Structure

2. Evolution

3. Mechanism of transport

4. Mechanism of assembly

5. Interactions with other systems
6. Modulation and therapy

A large collaborative effort with Mike Rout and Brian
Chait at Rockefeller University, also involving many
other collaborators (Acknowledgments).

National Center for Dynamic
NCDIR S NIH TCNP
Interactome Research

NLS-Cargo

Importing ) \

Karyopherin

Complex \ RanGDP. | ‘?;‘

»

¥

Field emission scanning EN

Kiseleva, Nat. Cell. Biol. 6, 497, éo .

NTF2
. 0

Consists of broadly conserved nucleoporins (nups). B RanGTP “ Exporting
Karyopherin
‘ { Complex

NES-Cargo

50 MDa complex: ~480 proteins of 30 different types.

Mediates all known nuclear transport, via cognate
transport factors (karyoferins or kaps)




What was known about the NPC structure?

FG Nup Filaments
Cytoplasmic 4
Ring

Inner Spoke Outer (Lumenal)
Ring Ring
Nuclear Nuclear
Ring Envelope

R. Milligan, W. Baumeister, O. Medalia, G. Blobel,
E. Hurt, U. Aebi, T. Schwartz, M. Stewart,
C. Akey, B. Chait, M. Rout, ...

M. Beck, V. Lucic, F. Forster, W. Baumeister, O. Medalia
Nature 449, 611-615 (2007).



An approach to integrative structural biology

Alber et al. Nature 450, 683-694, 2007
Robinson, Sali, Baumeister. Nature 450, 974-982, 2007
Alber, Foerster, Korkin, Topf, Sali. Annual Reviews in Biochemistry 77, 11.1—-11.35, 2008

Russel et al. PLoS Biology 10, 2012 @)=
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While it may be hard to live with generalization, it is inconceivable to live without it. Peter Gay, Schnitzler’s Century (2002).
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Determination by experiment versus prediction by modeling

) 4

EM microscopy

f Integrative structure determination
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Symmetry Restraints

TOP VIEW SIDE VIEW SCHEMATIC
cytosolic side QA ) sk

RS S

nuclear side

2-fold

Yang, Rout, Akey, Mol. Cell. 1, 223, 1998.
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nuclear side

2-fold

Yang, Rout, Akey, Mol. Cell. 1, 223, 1998.

half-spoke contains
~30 nucleoporin
proteins (NUPs).

~480 NUPs in NPC.
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Symmetry Restraints

TOP VIEW

SIDE VIEW SCHEMATIC
cytosolic side QA -+ s

nuclear side

2-fold

Yang, Rout, Akey, Mol. Cell. 1, 223, 1998.

half-spoke contains
~30 nucleoporin
proteins (NUPs).

~480 NUPs in NPC.

Configurations in spokes and rings are restrained to be
similar to each other via a DRMS-type restraint.

The same handedness of the half-spokes and rings is
achieved via dihedral angle restraints on subsets of
nucleoporins.
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Axial and Radial Localization Restraints on C-terminal
Protein Beads

gold-labeled Ig

IEM montage
(side view)

axial posiiton

radial position

& BC
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Axial and Radial Localization Restraints on C-terminal
Protein Beads
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Axial and Radial Localization Restraints on C-terminal
Protein Beads

gold-labeled Ig

radial position

IEM montage
(side view)

NUP57

axial posiiton

radial position

Y& BC |

axial posiition
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Tagging, Affinity Purification and Analysis of
Nucleoporin “Composites”
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Tagging, Affinity Purification and Analysis of
Nucleoporin “Composites”

- protein A tag ® several hundred “composites”

® ~1,300 protein bands identified by MS
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Composites are informative structurally, but
subject to assignment ambiguity
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Alber et al. Nature 450, 683-694, 2007
Alber et al. Structure 13, 435-445, 2005



Composites are informative structurally, but
subject to assignment ambiguity

A composite implies at least three direct protein
interactions that connect all four protein types.

ctols \ e But there is assignment ambiguity:
G P2 -  Which protein copies interact?
| — ]
‘P3 7_—  \What domains interact?

* Many possible alternative restraint assignments are
consistent with the composite data.
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Alber et al. Nature 450, 683-694, 2007
Alber et al. Structure 13, 435-445, 2005



Optimization
« Start with a random configuration of protein centers.

» Minimize violations of input restraints by conjugate gradients and molecular dynamics with
simulated annealing.

» Obtain an “ensemble” of many independently calculated models (~200,000).
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Protein Localization Probability and Volume

Calculated from the structural superposition of the ensemble of
models that satisfy all input restraints

Ensemble of solutions



Protein Localization Probability and Volume

Calculated from the structural superposition of the ensemble of
models that satisfy all input restraints

Ensemble of solutions -
Animation

can see position of
every NPC protein

Protein localization



How accurate is the structure of the NPC?
Assessing the well-scoring models

. Self-consistency of independent experimental data.

. Structural similarity among the configurations in the ensemble that
satisfy the input restraints.

. Simulations where a native structure is assumed, corresponding
restraints simulated from it, and the resulting calculated structure
compared with the assumed native structure.

. Patterns emerging from a mapping of independent and unused data
on the structure that are unlikely to occur by chance.

. Experimental spatial data that were not used in the calculation of the
structure.



B~ w =

Assessment 3/5:
Validation of the structure by a “simulated” model

Define a structure of the NPC as the native structure.
Simulate the restraints, given the native structure.
Calculate the structure based on the restraints.
Compare the calculated structure with the native one.

06/01/2006



B~ w =

Assessment 3/5:
Validation of the structure by a “simulated” model

Define a structure of the NPC as the native structure.
Simulate the restraints, given the native structure.
Calculate the structure based on the restraints.
Compare the calculated structure with the native one.

Nup84 Nup85

Nup157
Nup192

Nup170
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Assessment 4/5:
Patterns that are unlikely to occur by chance

X. Zhou (USC):
clustering of nucleoporin expression profiles
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X. Zhou (USC):

Assessment 4/5:
Patterns that are unlikely to occur by chance

clustering of nucleoporin expression profiles
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Assessment 5/5:
Experimental spatial data about the modeled structure that
were not used in the calculation of the model

Nup84 Complex Topology

M. Lutzmann, R. Kunze, A. Buerer, U. Aebi & E. Hurt, EMBO J. 21, 387, 2002.



Assessment 5/5:
Experimental spatial data about the modeled structure that
were not used in the calculation of the model

Nup84 Complex Topology

Nup8

M. Lutzmann, R. Kunze, A. Buerer, U. Aebi & E. Hurt, EMBO J. 21, 387, 2002.

NPC Map is Consistent with Experimental Data
Noft Included in the Calculations

Our Structure




Towards a higher resolution structure of the NPC
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Integrative structure determination of the Nup82 complex
Rout et al. Cell 2016, in press
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In Conclusion

The goal is a comprehensive description of the multitude of interactions b
between molecular entities, which in turn is a prerequisite for the discovery
of general structural principles that underlie all cellular processes.

This goal will be achieved by a formal integration of experiment,

physics, and statistical inference, spanning all relevant size and
time scales.
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of experiment
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