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Four Stages of Modeling
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Outcomes of structural modeling

\_  Useful Model! Biological insight!

Many models are wrong.
Some models are useful. -Andrej Sali

Robinson, Trnka et. al. 2015. eLife
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* The IMP developers make no guarantees of Nobel prizes based on use of the software



Yes, there are bad models...
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Validating / interpreting integrative models

= Methodology under development

wwPDB Validation © 3D Report  Full Report
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Crystallography validation protocols

= Complex analysis in IMP requires customized scripts
= We're developing pipelines to perform these methods



A subset of where can modeling go wrong
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What to validate?

= Sampling Exhaustiveness

= Possible sampling missed a subset of good
scoring models

= Fit to Data/Restraints

= Poorly fit data may indicate problem with
data/modeling

= Jackknifing
" Guard against overfitting
= Complete cross-validation
= Like a composite omit map

= Validation against other data

= How to proceed:
= All models




Step 4: Practical Analysis Flowchart
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Step 4: Analysis
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0. Pre-processing

= Split sampling into multiple independent sets
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Sample 1 Sample 2
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0. Pre-processing

= Split sampling into multiple independent sets
= Gather best scoring models

# Must be run in same directory as “output” folder

import IMP
import IMP.pmi
import IMP.pmi.macros

num_models = 100

model = IMP.Model()
are = IMP.pmi.macros.AnalysisReplicaExchange@(model)

are.clustering(score_key='Total Score’,
feature keys=[],
rmsd_calculation_components=None,
alignment_components=None,
number_of_best_scoring_models=num_models,
skip clustering=True,
first_and_last_frames=(0,100) # values are percentages..
) # ..use to split a single trajectory




1. Assessing Sampling Exhaustiveness

Two (or more) independent
sets of good scoring models

—

= |mpossible to search entire landscape

= Method: Compare independent samples

of models
= Visual analysis:

(Clustering J

[Precision )

{Visual Analysis)

\

4 Sampling Convergence\

)

Compare localization densities.

= Statistical (in)significance:

Show no statistically significant differences between clustering

results

* No method gives proof of convergence

Yes
— Pass?
Localization
No densities at a
certain
precision

\ 4
= Sample more

= Reduce sampling space
= add more information

= Reduce DOF

= reduce representation
= impose symmetry



1. Assessing Sampling Exhaustiveness

= Visual Analysis

= Get clusters and localization densities for each independent cluster

import IMP
import IMP.pmi
import IMP.pmi.macros

rmf_dir = ./rmfs/
num_rmfs = 4
num_clusters = 1

# path to the rmf directory
# number of rmfs in the directory

# Setup macro
model = IMP.Model()
mc = IMP.pmi.macros.AnalysisReplicaExchange@(model)

rmsdc = {"B":"B"} # compo
alignc = None

densityc = {"Spc97":["Spc97"],"Spco98":["Spc98"], "Tub4":
["Tub4d"],"Spcl10":["Spclle"]}
#densityc = None

mc.clustering (rmsd_calculation_components=rmsdc,
number_of_clusters=num_clusters,
display_plot=True,
number_of_best _scoring models=num_rmfs,
exit_after_display = False,
rmfsdir=rmf_dir,
density custom ranges = densityc)

Yeast Mediator Complex

Total ensemble First half Second half
of solutions ensemble ensemble

Robinson, Trnka et. al. 2015. elLife



1. Assessing Sampling Exhaustiveness

" Clustering and Precision

Distance matrix is determined by pairwise C,
RMSD calculation

k-means is used to separate into clusters based
on RMSD

=  Must specify the number of clusters

How many clusters to choose?
= Visual analysis
= (Clustering metrics

Clustering choices determine precision of your
models

= Many clusters - high precision

= Fewer clusters — low precision

Contingency test P-value
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1. Assessing Sampling Exhaustiveness

Chi? Sampling Test Flowchart

Input: Two independent 1. Cluster all models together
stochastic samples of - | using k-means for several
models values of k
Null hypothesis: two independent 2. Determine k7, the optimal
samples have the same distribution value of k based on
(sampling is exhaustive). clustering metrics
Insufficient 3. Count population of each
sampling sample in each of the k
clusters (contingency table)

p<0.05 1
4. Perform chi-square j
e

/Output: p-value / <+— | contingency test to determin

Sampling is sample independence
not proven p >0.05
insufficient




Chi-squared convergence test

= INPUT: Get Ntop scoring models for each run from the

output of sampling
get top _models each _run.py <N>

= 1. Clustering: Perform k-means clustering on the o100 7w o0 w10
combined set of models
cluster_kn.py

Sample 1 @
Sample2 @
L]

o

Coordinate 1

precision_rmsf.py

Coordinate 2

= 2. Determine k*: Determine the optimal value of k using

clustering metrics
metric_wrapper.sh

= Dunn Index: ratio of minimum inter cluster precision to
maximum intra cluster precision.
metric_dunn.py
= Distortion Index:, f(k) : does having k clusters produce a

smaller distortion than having k-1 clusters?
metric_fk.py

f(k) [ )
Dunn Index [

Clustering Metric
-
w

1 2 3 4 5 6 7 8
Number of Clusters



Contingency table and p-value calculation

= 3. Population Count: Calculate
number of models from each run in all

clusters to form contingency table
get models per cluster_kmeans.py

= 4. Calculate p-value: A p-value < 0.05
indicates a statistically significant
difference between populations and
incomplete sampling

test sampling convergence.py

: numModelsFile = sys.argv[1] # file with number of models per cluster
: modelsArray = numpy.loadtxt(numModelsFile)

Pct. of Run in Cluster
Cluster Run1 Run 2
0 48.0 36.0
1 20.0 24.8
2 32.0 39.2
60
Run1l1
E 50
2 “ Run?2
S 40
O
£ 30
c
Y 2
o
a

. percentArray = numpy.transpose((modelsArray/modelsArray.sum(axis=0)) * 100. 9)

: [chlsquare pvalue,dof,expected]=scipy.stats.chi2 contingency(percentArray)

. print "P-value",pvalue

il .

0 1
Cluster

2

p-value = 0.228



1. Assessing Sampling Exhaustiveness

= Qutput:
= Clusters

" Localization Density (or Ensemble)

= Precision

Single cluster ensemble

Comparison of single and
multi-state ensembles

Carter, Lester, et al. "Prion Protein—Antibody Complexes Characterized by Chromatography-
Coupled Small-Angle X-Ray Scattering." Biophysical journal 109.4 (2015): 793-805.
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2. Assessing Fit to Data

(2. Analyze fit to

Best scoring model(s) input information

Input information

2NN
% S

\

= Method: Does the resulting
ensemble of best scoring models
actually represent the input data?

= Passing criteria are subjective

Fitting metrics Yes
9

No

Examine restraints that are not

satisfied by any model

Artifacts

Different experimental conditions
Evaluate a multi-state model

Can you satisfy the model with two
states simultaneously



2. Assessing Fit to Data

Assessing Violations by Data Type
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= EM

= Cross Correlation “E ' v

Chi value = 1.66

= Visual inspection

Subjective Questions:

= How do we define a violation?
= How many violations define a failing model?




Step 4: Analysis
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3. Resampling Methods

Proposed 3. Reifr_?plmg Metric
Jackkniting

Model bootstrapping

Ensemble cross-validation Visual

- Recalculate models using subsets of the ~ - Modelis too dependent on

data
= Bootstrapping
= Remove random subsets of data
= Jackknifing
= Remove systematic subsets of data
= Cross-validation

certain data
Reduce weight of the offending data

= Data is not self-consistent

= Predict values of held-out data P A o
= Score to original data &, Wt
= Prevent overfitting to certain data SN iy
= Assess the stability of the model ensemble with with Mo i
respect to target data. Similar to calculating the

composite omit map



3. Resampling Methods

= Jackknifing

= Omit pieces of data

= Whole sets
EM

SAXS

= Subsets
XL

Original
Sampling

Omit EM

Omit SAXS

= Densities similar?

= Precision similar? A
Densities ‘%

scalculating the entire ensemble i Precision
expensive. (A)

17.3

&

25.4

18.9




Step 4: Analysis
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4. Fit to Information Not Used in Modeling

Best scoring model(s) (4. Fit to data not
used in modeling

Input information

= Same methodology as Step 2

Pre-defined hold-out set
Information that is difficult to
embed in a restraint
Information from a slightly
different construct

New information collected after
modeling

] Fitting metrics Yes
J

No

Examine restraints that are not

satisfied by any model
Artifacts

Different experimental conditions

Globular
Domain 2  Globular

A
Dyn2-DID,,_ .. Stalk — Dyn2-DID,_  Stalk
Fernandez-Martinez et al. 2016 Gaik et al. 2015

Comparison of Nup82 models to
negative stain EM of truncated model



5. Biological Significance

= The utility of the model is, in itself, a validation.
= Satisfaction of patterns unlikely to occur by chance

= A wrong model is not likely to make sense

«  Poor book holder Probably
e Pretty unstable incorrect

* Can hold books babl
Supposed to be a bookshelf * Looks like IKEA Probably
, correct
* Doesn’t fall apart



5. Biological Significance

= The utility of the model is, in itself, a validation.
= Satisfaction of patterns unlikely to occur by chance

Observation of suspected 16-fold
symmetry in the NPC

Alber, Frank, et al. "The molecular architecture of the nuclear
pore complex." Nature 450.7170 (2007): 695-701.



5. Biological Significance

Proposed
Model

Ensemble

Biological Reasonable confidence that model
lologica is correct

sense”?

No

A 4

Model is not necessarily wrong,
but care must be taken in any
new claims



What if | need more information?

= Look outside of traditional structural biophysical

experiments
= ColP
» Hydrogen/Deuterium Exchange

= Make simple assumptions
= Symmetry
= Interface
= Oligomerization states
= Stoichiometry



Communicating model validation

= Recent examples

Fernandez-Martinez et al., Structure and Function of the Nuclear Pore Complex
Cytoplasmic mRNA Export Platform, Cell (2016), http://dx.doi.org/10.1016/j.cell.
2016.10.028

Robinson, Philip J., et al. Molecular architecture of the yeast Mediator complex,
Elife 4 (2015), http://dx.doi.org/10.7554/elife.08719



Integration into the WWPDB
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Figure 6. Components of the extensible wwPDB workflow system. It

consists of the workflow runtime execution environment, workflow control
and curation-task-specific user interfaces, and the supporting compute
server infrastructure. The proposed validation and visualization tools for I/H

models are highlighted.



Recap

= Validation is a fundamental part of modeling
= Reduce probability of publishing errors

= Assessment of the quality of the model and data

= Methods for validating integrative models are under
development and not exhaustive

= Guide using recent examples

= Watch for future developments / pipelines in IMP



Future of IMP

= IMP is under heavy development
= 2017 reformulation of the python interface, PMI
= Check www.integrativemodeling.org

= Addition of new experimental methods
= Second Harmonic Generation
» Hydrogen/Deuterium Exchange

= Fiber Diffraction
= P77

= Integration with ChimeraX

= Collaboration pushes IMP forward
= What interesting problems of yours need solving?



