- we are mostly avoiding abbreviations, so get_trans should probably be "get_translation". It is a bit weird just having that (and no get_matrix or "get_rotation")
- The function on Rotation3D shouldn't be mult (since it isn't necessarily multiplication as it is not necessarily a matrix). "transform" taken from Transformation3D or "rotate" are probably the best options.
- I still don't like exposing the various methods on Matrix3D having to do with rotation. I think they should be hidden (and some classes made friends if outside classes need them).
Otherwise, looks good. THanks.
On Nov 29, 2008, at 6:14 PM, Notification of IMP commits wrote:
Author: ">kerenl@SALILAB.ORG Date: 2008-11-29 18:14:37 -0800 (Sat, 29 Nov 2008) New Revision: 903
Modified: trunk/modules/misc/include/Rotation3D.h trunk/modules/misc/include/Transformation3D.h trunk/modules/misc/pyext/misc.i trunk/modules/misc/src/SConscript trunk/modules/misc/test/transformation/test_particles_transformation.py trunk/modules/misc/test/transformation/test_rigid_transformation.py Log: Update interface for Rotation3D class
//! 3D rotation class. -/** Holds a 3-dimensional rotation compactly using a quaternions (4 numbers). - For a given axis and angle, one can easily construct the corresponding - quaternion, and conversely, for a given quaternion one can easily read - off the axis and the angle. - Another advantage is robustness to rounding errors. - The quaternions representation does not harm the performance too much. +/** Holds a three dimensional rotation compactly using a quaternion (4 numbers). + Advantages using quaternion: + 1. Easy convertion between axis/angle to quaternion reprsentation + 2. Robustness to rounding errors. + 3. Is not subject to "Gimbal lock" (i.e. attempts to rotate an + object fail to appear as expected, due to the order in which the + rotations are performed) like Euler angles. + 4. Can be interpolated + 5. The quaternions representation does not harm the performance too much. + http://www.euclideanspace.com/maths/algebra/matrix/orthogonal/rotation/index.htm + + Currently the rotation can be initialized from either: + XYZ Euler angles + Rotation Matrix + Quaternion */
class IMPMISCEXPORT Rotation3D { public: - Rotation3D(){ - } - //! Initialize a rotation in x-y-z order from three angles - /** \param[in] xr Rotation around the X axis in radians - \param[in] yr Rotation around the Y axis in radians - \param[in] zr Rotation around the Z axis in radians - */ - Rotation3D(Float xr, Float yr, Float zr) { - init_angles(xr,yr,zr); + Rotation3D():a_(0.0),b_(0.0),c_(0.0),d_(0.0) {} + Rotation3D(Float a, Float b, Float c, Float d){ + a_=a;b_=b;c_=c;d_=d; } - //! Initialize a rotation in x-y-z order from three identical angles - /** \param[in] e_angle Rotation around first the X axis, Y axis and Z axis - in radians - */ - Rotation3D(Float e_angle){ - init_angles(e_angle, e_angle, e_angle); + //! Rotation by vector multiplication + Vector3D mult(const Vector3D &o) const { + return Vector3D((a_*a_+b_*b_-c_*c_-d_*d_)*o[0] + + 2*(b_*c_-a_*d_)*o[1] + 2*(b_*d_+a_*c_)*o[2], + 2*(b_*c_+a_*d_)*o[0] + + (a_*a_-b_*b_+c_*c_-d_*d_)*o[1] + 2*(c_*d_-a_*b_)*o[2], + 2*(b_*d_-a_*c_)*o[0] + + 2*(c_*d_+a_*b_)*o[1] + (a_*a_-b_*b_-c_*c_+d_*d_)*o[2]); } - Matrix3D get_matrix() const { - const Float a = quat_[0]; - const Float b = quat_[1]; - const Float c = quat_[2]; - const Float d = quat_[3]; - return Matrix3D(a*a+b*b-c*c-d*d, 2*(b*c-a*d) , 2*(b*d+a*c), - 2*(b*c+a*d) , a*a-b*b+c*c-d*d, 2*(c*d-a*b), - 2*(b*d-a*c) , 2*(c*d+a*b) , a*a-b*b-c*c+d*d); + void show(std::ostream& out = std::cout) const { + out <<a_<<"|"<<b_<<"|"<<c_<<"|"<<d_<<'\n'; } - //! Rotation by vector multiplication - Vector3D operator*(const Vector3D &o) const { - const Float a = quat_[0]; - const Float b = quat_[1]; - const Float c = quat_[2]; - const Float d = quat_[3]; - return Vector3D((a*a+b*b-c*c-d*d)*o[0] + 2*(b*c-a*d)*o[1] + 2*(b*d+a*c)*o[2], - 2*(b*c+a*d)*o[0] + (a*a-b*b+c*c-d*d)*o[1] + 2*(c*d-a*b)*o[2], - 2*(b*d-a*c)*o[0] + 2*(c*d+a*b)*o[1] + (a*a-b*b-c*c+d*d)*o[2]); - } - //! Returns the rotation around the x-axis for a rotational matrix assuming - //! rotations are performed in the order of x-y-z. - Float rotX() const{ - return atan2(matrix32(), matrix33()); - } +private: + Float a_,b_,c_,d_; +};
- //! Returns the rotation around the y-axis for a rotational matrix assuming - //! rotations are performed in the order of x-y-z. - Float rotY() const{ - return atan2(matrix31(), sqrt(sqr(matrix21())+sqr(matrix11()))); - }
- //! Returns the rotation around the z-axis for a rotational matrix assuming - //! rotations are performed in the order of x-y-z. - Float rotZ() const{ - return atan2(matrix21(), matrix11()); - } +//! Initialize a rotation in x-y-z order from three angles +/** \param[in] xr Rotation around the X axis in radians + \param[in] yr Rotation around the Y axis in radians + \param[in] zr Rotation around the Z axis in radians + \note The three rotations are represented in the original (fixed) + coordinate frame. http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles +*/ +inline Rotation3D rotation_from_fixed_xyz(Float xr,Float yr, Float zr) +{ + Float a,b,c,d; + Float cx = cos(xr); Float cy = cos(yr); Float cz = cos(zr); + Float sx = sin(xr); Float sy = sin(yr); Float sz = sin(zr); + Float m00 = cz*cy; + Float m11 = -sy*sx*sz + cx*cz; + Float m22 = cy*cx; + a = sqrt(1+m00+m11+m22)/2.0; + b = sqrt(1+m00-m11-m22)/2.0; + c = sqrt(1-m00+m11-m22)/2.0; + d = sqrt(1-m00-m11+m22)/2.0; + if (cy*sx + sy*cx*sz + sx*cz < 0.0) b = -b; + if (sz*sx - sy*cx*cz - sy < 0.0) c = -c; + if (sz*cy + sy*sx*cz + sz*cx < 0.0) d = -d; + return Rotation3D(a,b,c,d); +}