IMP  2.4.0
The Integrative Modeling Platform
multiscale.py
1 ## \example domino/multiscale.py
2 # We are interested in applying domino to problems systematically in a
3 # multiscale manner. This script experiments with those approaches.
4 
5 import IMP.domino
6 import IMP.core
7 
9 m.set_log_level(IMP.base.SILENT)
11  for i in range(0, 3)]
12 for i, d in enumerate(ds):
13  d.set_radius(1)
15 
16 k = 1
17 h = IMP.core.Harmonic(0, k)
20  ds[0], "0 at origin")
21 
24  )[0]),
25  ds[1], "1 on axis")
26 
27 rs = [r0, r1]
28 for pr in [(0, 1), (1, 2), (0, 2)]:
30  (ds[pr[0]], ds[pr[1]]),
31  "R for " + str(pr))
32  rs.append(r)
33 
34 
37 
38 covers = []
39 for i in range(0, 6):
41  print(cur)
42  covers.append([IMP.algebra.Vector3D(x[0], x[1], 0) for x in cur])
43 
44 
45 def setup(cover, scale):
47  st = IMP.domino.XYZStates(cover)
48  for p in ds:
49  pst.set_particle_states(p, st)
50  for r in rs:
51  r.set_maximum_score(.5 * scale ** 2)
54  rc.add_restraints(rs)
56  lf]
57  sampler = IMP.domino.DominoSampler(m, pst)
58  sampler.set_subset_filter_tables(fs)
59  sampler.set_log_level(IMP.base.SILENT)
60  return (sampler, lf, pst)
61 
62 (sampler, lf, pst) = setup(covers[0], 4.0)
63 
64 subset = IMP.domino.Subset(ds)
65 ac = sampler.get_sample_assignments(subset)
66 
67 print(ac)
68 
69 
70 def get_mapping(cover0, cover1):
71  nn = IMP.algebra.NearestNeighbor3D(cover0)
72  ret = [[] for c in cover0]
73  for i, p in enumerate(cover1):
74  nns = nn.get_nearest_neighbor(p)
75  ret[nns].append(i)
76  return ret
77 
78 mw = IMP.display.PymolWriter("mapping.pym")
79 
80 
81 def display_mapping(index, cover0, cover1, mapping):
82  mw.set_frame(index)
83  for i, c in enumerate(mapping):
84  for p in c:
85  g = IMP.display.PointGeometry(cover1[p])
86  g.set_color(IMP.display.get_display_color(i))
87  g.set_name("fine")
88  mw.add_geometry(g)
89  for i, c in enumerate(cover0):
91  g.set_color(IMP.display.get_display_color(i))
92  g.set_name("coarse")
93  mw.add_geometry(g)
94 
95 
96 for curi in range(1, len(covers)):
97  scale = 4.0 / 2 ** curi
98  print(scale)
99  mapping = get_mapping(covers[curi - 1], covers[curi])
100  print(mapping)
101  display_mapping(curi - 1, covers[curi - 1], covers[curi], mapping)
102  (sampler, lf, pst) = setup(covers[curi], scale)
103  lac = ac
104  cac = []
105  for a in lac:
106  for i, p in enumerate(subset):
107  s = a[i]
108  allowed = mapping[s]
109  lf.set_allowed_states(p, allowed)
110  ccac = sampler.get_sample_assignments(subset)
111  print(a, ccac)
112  cac = cac + ccac
113  ac = list(set(cac))
114  print("for scale", scale, "got", ac)
115  sw = IMP.display.PymolWriter("solutions." + str(curi) + ".pym")
116  for i, a in enumerate(ac):
117  IMP.domino.load_particle_states(subset, a, pst)
118  sw.set_frame(i)
119  for p in ds:
120  g = IMP.core.XYZRGeometry(p)
121  sw.add_geometry(g)
122  for c in covers[curi]:
124  g.set_color(IMP.display.Color(1, 1, 1))
125  g.set_name("grid")
126  sw.add_geometry(g)
Represent an RGB color.
Definition: Color.h:24
setup
Definition: setup.py:1
VectorD< 2 > Vector2D
Definition: VectorD.h:391
Maintain an explicit list of what states each particle is allowed to have.
Sample best solutions using Domino.
Definition: DominoSampler.h:32
A harmonic score on the distance between two spheres.
Filter a configuration of the subset using the kernel::Model thresholds.
Represent a subset of the particles being optimized.
Definition: Subset.h:33
static XYZR setup_particle(kernel::Model *m, ParticleIndex pi)
Definition: XYZR.h:48
static Colored setup_particle(kernel::Model *m, ParticleIndex pi, Color color)
Definition: Colored.h:62
Color get_display_color(unsigned int i)
Apply a function to the distance to a fixed point.
Class to handle individual model particles.
An axis-aligned bounding box.
Definition: BoundingBoxD.h:27
base::Vector< VectorD< D > > get_grid_interior_cover_by_spacing(const BoundingBoxD< D > &bb, double s)
Basic functionality that is expected to be used by a wide variety of IMP users.
VectorD< 3 > Vector3D
Definition: VectorD.h:395
Write a CGO file with the geometry.
Definition: PymolWriter.h:34
Applies a PairScore to a Pair.
Definition: PairRestraint.h:29
static const FloatKeys & get_xyz_keys()
Get a vector containing the keys for x,y,z.
void load_particle_states(const Subset &s, const Assignment &ss, const ParticleStatesTable *pst)
Applies a SingletonScore to a Singleton.
Apply a function to an attribute.
Divide-and-conquer inferential optimization in discrete space.
Class for storing model, its restraints, constraints, and particles.
Definition: kernel/Model.h:73
Display an IMP::core::XYZR particle as a ball.
Definition: XYZR.h:149
Harmonic function (symmetric about the mean)
Definition: core/Harmonic.h:24