IMP  2.4.0
The Integrative Modeling Platform
displaying_ensembles.py
1 ## \example display/displaying_ensembles.py
2 # The script shows a couple experiments with trying to visualize an
3 # ensembe of structures. The ensemble is fairly tight on the assembly
4 # scale, but there is significant variation between the location and
5 # orientation of the individual proteins (which were modeled as rigid
6 # bodies). To save space, the models have had their sidechain atoms
7 # removed.
8 
9 from __future__ import print_function
10 import IMP.display
11 import IMP.atom
12 
13 Segment = IMP.algebra.Segment3D
14 Cylinder = IMP.algebra.Cylinder3D
15 
16 # turn off internal checks to speed things up
17 IMP.base.set_check_level(IMP.base.USAGE)
18 
19 
20 def read(m, beyond_file):
21  print("reading")
22  hs = []
23  for i in range(0, beyond_file):
24  # create a simplified version for each chain to speed up computations
26  "ensemble/aligned-" + str(i) + ".pdb")
29  hs.append(hr)
30  for c in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
32  IMP.atom.Chain(c), 4)
33  hr.add_child(simp)
35  if i == 0:
36  base = IMP.atom.get_leaves(hr)
37  print(" ", i)
38  return hs
39 
40 
41 def add_markers(h, c, w):
42  """Add markers to a the passed conformation. The marker locations are chosen
43  pretty thoughtlessly and don't really illustrate the technique well."""
44  def add_marker(s, name):
45  g = IMP.core.XYZRGeometry(s.get_selected_particles()[0])
46  g.set_name(name)
47  g.set_color(c)
48  w.add_geometry(g)
49  s = IMP.atom.Selection(h, chain='B', residue_index=317)
50  add_marker(s, "m0")
51  s = IMP.atom.Selection(h, chain='G', residue_index=212)
52  add_marker(s, "m1")
53  s = IMP.atom.Selection(h, chain='I', residue_index=237)
54  add_marker(s, "m2")
55  s = IMP.atom.Selection(h, chain='F', residue_index=101)
56  add_marker(s, "m3")
57 
58 
59 def get_nice_name(h):
60  nm = h.get_name()
61  return nm[nm.find('-') + 1:nm.rfind('.')]
62 
63 
64 def add_axis(h, c, w, chain_colors):
65  """Add a coordinate axis to show the relative orientation of the protein"""
66  for hc in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
67  rb = IMP.core.RigidMember(hc).get_rigid_body()
68  g = IMP.display.ReferenceFrameGeometry(rb.get_reference_frame())
69  g.set_name(get_nice_name(h) + "_orient")
70  if c:
71  g.set_color(c)
72  else:
73  g.set_color(chain_colors[IMP.atom.Chain(hc).get_id()])
74  w.add_geometry(g)
75 
76 
77 def add_skeleton(h, c, r, w, chain_colors):
78  """Show the connectivity skeleton of the conformation to give an idea of
79  how things are layed out"""
80  for hc0 in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
81  for hc1 in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
82  if hc1 <= hc0:
83  continue
84  d = ps.evaluate((hc0, hc1), None)
85  if d < 1:
86  d0 = IMP.core.XYZ(hc0)
87  d1 = IMP.core.XYZ(hc1)
88  mp = .5 * (d0.get_coordinates() + d1.get_coordinates())
90  Cylinder(Segment(d0.get_coordinates(), mp), r))
91  if c:
92  g.set_color(c)
93  else:
94  g.set_color(chain_colors[IMP.atom.Chain(d0).get_id()])
95  g.set_name(get_nice_name(h) + "_skel")
96  w.add_geometry(g)
98  Cylinder(Segment(d1.get_coordinates(), mp), r))
99  if c:
100  g.set_color(c)
101  else:
102  g.set_color(chain_colors[IMP.atom.Chain(d1).get_id()])
103  g.set_name(get_nice_name(h) + "_skel")
104  w.add_geometry(g)
105 
106 IMP.base.set_log_level(IMP.base.TERSE)
107 m = IMP.kernel.Model()
108 
109 # change to 46 to display all of them
110 hs = read(m, 3)
111 
112 # used to test of two molecules are touching one another
116 ps.set_log_level(IMP.base.SILENT)
117 
118 
119 print("creating rigid bodies")
120 base_chains = {}
121 for hc in IMP.atom.get_by_type(hs[0], IMP.atom.CHAIN_TYPE):
122  c = IMP.atom.Chain(hc)
123  base_chains[c.get_id()] = c
124 
125 for i, h in enumerate(hs):
126  for hc in IMP.atom.get_by_type(h, IMP.atom.CHAIN_TYPE):
127  c = IMP.atom.Chain(hc)
128  if h == hs[0]:
130  else:
131  # make sure the rigid bodies have equivalent defining reference frames
132  # if we just used IMP.atom.create_rigid_body, globular proteins are likely
133  # to have different axis computed when starting in different
134  # orientations
136  hc, base_chains[c.get_id()])
137  print(" ", i)
138 
139 chains = IMP.atom.get_by_type(hs[0], IMP.atom.CHAIN_TYPE)
140 chains.sort(key = lambda x: IMP.core.XYZ(x).get_x() + IMP.core.XYZ(x).get_y())
141 chain_colors = {}
142 for i, c in enumerate(chains):
143  id = IMP.atom.Chain(c).get_id()
144  #f= i/float(len(chains))
146  # IMP.display.get_jet_color(f)
147  chain_colors[id] = color
148 
149 w = IMP.display.PymolWriter("markers.pym")
150 add_markers(hs[0], IMP.display.Color(1, 1, 1), w)
151 hso = hs[1:]
152 
153 
154 # sort them spatially so the colors are nicely arranged and allow one to visually connect
155 # the position of one end with that of the other
156 hso.sort(key=lambda h: IMP.core.XYZ(IMP.atom.Selection(h, chain='I',
157  residue_index=237).get_selected_particles()[0]).get_z())
158 print("adding markers", end=' ')
159 for i, h in enumerate(hso):
161  IMP.display.Color(1, 0, 0), IMP.display.Color(0, 0, 1), i / 50.)
162  add_markers(h, c, w)
163  print(" ", i)
164 w = IMP.display.PymolWriter("axis.pym")
165 print("adding axis", end=' ')
166 add_axis(hs[0], IMP.display.Color(1, 1, 1), w, chain_colors)
167 for i, h in enumerate(hs[1:]):
168  add_axis(h, None, w, chain_colors)
169  print(i, end=' ')
170 
171 w = IMP.display.PymolWriter("skeletons.pym")
172 add_skeleton(hs[0], IMP.display.Color(1, 1, 1), 5, w, chain_colors)
173 print("adding skeleton", end=' ')
174 for i, h in enumerate(hs[1:]):
175  add_skeleton(h, None, 1, w, chain_colors)
176  print(" ", i)
Represent an RGB color.
Definition: Color.h:24
Return the hierarchy leaves under a particle.
Definition: LeavesRefiner.h:25
Upper bound harmonic function (non-zero when feature > mean)
IMP::core::RigidBody create_compatible_rigid_body(Hierarchy h, Hierarchy reference)
Rigidify a molecule or collection of molecules.
void set_log_level(LogLevel l)
Set the current global log level.
void set_check_level(CheckLevel tf)
Control runtime checks in the code.
Definition: exception.h:73
Represent a cylinder in 3D.
Definition: Cylinder3D.h:26
A score on the distance between the surfaces of two spheres.
Color get_interpolated_rgb(const Color &a, const Color &b, double f)
Return a color interpolated between a and b in RGB space.
Definition: Color.h:143
static Hierarchy setup_particle(kernel::Model *m, kernel::ParticleIndex pi, kernel::ParticleIndexesAdaptor children=kernel::ParticleIndexesAdaptor())
Hierarchies get_by_type(Hierarchy mhd, GetByType t)
std::string get_example_path(std::string file_name)
Return the path to installed example data for this module.
Color get_display_color(unsigned int i)
A decorator for a particle with x,y,z coordinates.
Definition: XYZ.h:30
Class to handle individual model particles.
static const IMP::core::HierarchyTraits & get_traits()
Get the molecular hierarchy HierarchyTraits.
void destroy(Hierarchy d)
Delete the Hierarchy.
Simple implementation of segments in 3D.
Definition: Segment3D.h:24
Hierarchy create_simplified_along_backbone(Chain input, const IntRanges &residue_segments, bool keep_detailed=false)
IMP::core::RigidBody create_rigid_body(Hierarchy h)
Write a CGO file with the geometry.
Definition: PymolWriter.h:34
Store info for a chain of a protein.
Definition: Chain.h:21
Select all CA ATOM records.
Definition: pdb.h:76
Output IMP model data in various file formats.
Functionality for loading, creating, manipulating and scoring atomic structures.
void read_pdb(base::TextInput input, int model, Hierarchy h)
Hierarchies get_leaves(const Selection &h)
Select hierarchy particles identified by the biological name.
Definition: Selection.h:62
Class for storing model, its restraints, constraints, and particles.
Definition: kernel/Model.h:73
Display an IMP::core::XYZR particle as a ball.
Definition: XYZR.h:149